Solarer Wasserstoff mit „künstlichem Blatt“:

© HZB

Forschungsteam findet heraus, warum eine einfache Behandlung die Effizienz von preiswerten Metall-Oxid-Photoelektroden steigert

Metall-Oxide sind als preiswerte und stabile Photoelektroden für die Aufspaltung von Wasser mit Sonnenlicht im Gespräch. Leider lassen sich mit dieser Materialklasse bisher nur mittelmäßig hohe Wirkungsgrade erzielen.  Mit einer Wärmebehandlung unter Wasserstoff-Atmosphäre lässt sich die Effizienz jedoch etwas steigern. Nun hat eine internationale Kooperation herausgefunden, welche Mechanismen dabei eine Rolle spielen. Die Ergebnisse zeigen Wege zu effizienteren und gleichzeitig preisgünstigen Materialsystemen für die solare Wasserstoffproduktion.

Die Energieversorgung basiert noch immer zu einem Großteil auf fossilen Ressourcen. Dass sich dies rasch ändern muss, ist unbestritten. Eine Alternative zu fossilem Erdgas ist Wasserstoff. Wasserstoff hat eine enorme Energiedichte, kann gespeichert oder weiterverarbeitet werden, z.B. zu Methan, oder in einer Brennstoffzelle sauberen Strom erzeugen. Und wenn Wasserstoff allein mit Sonnenlicht produziert wird, wäre es eine komplett erneuerbare Energieressource, deren Verbrauch klimaneutral ist.

Künstliches Blatt

Die Natur macht es mit der Photosynthese vor: Sonnenlicht lässt sich nutzen, um Wasser in Sauerstoff und Wasserstoff zu spalten. Dies gelingt auch mit künstlich hergestellten Materialsystemen aus photoaktiven, halbleitenden Schichten: „Künstliche Blatt”-Systeme schaffen im Extremfall sogar Wirkungsgrade von über 15 Prozent, weit mehr als das natürliche Vorbild (1-2%). Solche Rekord-Wirkungsgrade wurden bisher jedoch nur mit einer teuren Materialkombination erreicht, die im Kontakt mit Wasser nicht lange stabil blieb. Damit solar erzeugter Wasserstoff wirklich auf den Markt kommen kann,  müssen solche Systeme langzeitstabil, preiswert und effizient zugleich sein.

Spitzenkandidaten mit einem Nachteil

Komplexe Metall-Oxide sind sehr gute Kandidaten für künstliche Blatt-Systeme: Sie sind preiswert und stabil, auch in wässrigen Lösungen. Wissenschaftler am HZB-Institut für Solare Brennstoffe arbeiten intensiv daran, diese Materialklasse weiterzuentwickeln. Bislang zeigen Photoelektroden aus Metall-Oxiden allerdings nur moderate Wirkungsgrade (< 8 %). Einer der Gründe liegt in der schlechten Beweglichkeit der Ladungsträger, die bis zu 100.000 mal schlechter ist als in klassischen Halbleitermaterialien wie Silizium oder Gallium-Arsenid. „Dass die Ladungsträger langsam sind, wäre nicht mal so schlimm. Das Problem ist, dass sie oft sehr kurze Lebensdauern haben, im Bereich von Piko- oder sogar Nanosekunden. Viele verschwinden so schnell, dass sie überhaupt nicht zur Aufspaltung von Wasser beitragen“, erklärt HZB-Forscher Dr. Fatwa Abdi.

Wärmebehandlung mit Wasserstoff

Dagegen hilft eine Wärmebehandlung unter Wasserstoff-Atmosphäre, nachdem die Mteall-Oxid-Schichten deponiert wurden. Fatwa Abdi und Kollegen haben nun in Bismuth-Vanadat (BiVO4), einem der interessanten Materialien für Photoelektroden, untersucht, warum diese Behandlung die Lebensspanne der Ladungsträger verbessert.

Lebenszeit der Ladungsträger verdoppelt

Mit zeitaufgelösten Leitfähigkeitsmessungen zeigten sie, dass sowohl Elektronen als auch Löcher in Wasserstoff-behandeltem BiVO4 mehr als doppelt so lange „überleben“ als im unbehandelten Material. Dadurch steigt auch der Photostrom unter Sonnenlicht deutlich, was sich positiv auf die Effizienz auswirkt. Weitere Messungen der Dresdner Kooperationspartner sowie Berechnungen der Partner von KAUST, Saudi Arabien, belegen: Durch die Behandlung werden Wasserstoff-Atome in die Metall-Oxid-Schicht eingebaut und damit Defekte inaktiviert und reduziert. „Damit gibt es im Material weniger “Fallen”, in denen Ladungsträger verloren gehen oder rekombinieren. Dadurch können mehr Ladungsträger zum Aufspalten des Wassers beitragen“, erklärt Abdi.

Die Studie ist publiziert in Advanced Energy Materials (25. August 2017): Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment (DOI: 10.1002/aenm.201701536)

Ji-Wook Jang, Dennis Friedrich, Sönke Müller, Marlene Lamers, Hannes Hempel, Sheikha Lardhi, Zhen Cao, Moussab Harb, Luigi Cavallo, René Heller, Rainer Eichberger, Roel van de Krol, and Fatwa F. Abdi*


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.