Neu am Campus Wannsee: CoreLab Quantenmaterialien

In diesem optischen Zonenschmelzofen enstehen große Einkristalle.

In diesem optischen Zonenschmelzofen enstehen große Einkristalle. © M. Setzpfandt/HZB

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten.

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten. © M. Setzpfandt/HZB

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe.

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe. © M. Setzpfandt/HZB

Das Helmholtz-Zentrum Berlin erweitert sein Angebot an CoreLabs für die Forschung an Energiematerialien. Zusätzlich zu den fünf bereits etablierten CoreLabs wurde nun ein CoreLab für Quantenmaterialien eingerichtet. Ein Forscherteam vom HZB-Institut für Quantenphänomene in neuen Materialien betreut das CoreLab mit dem modernen Gerätepark. Das CoreLab steht auch Messgästen aus anderen Forschungseinrichtungen offen.  

Quantenphänomene treten in der Regel am deutlichsten in perfekten Einkristallen und bei tiefen Temperaturen auf. Um solche Einkristalle herzustellen, mit Laborexperimenten zu vermessen oder für Messungen an der Neutronenquelle BER II oder bei BESSY II vorzubereiten, hat ein Team um Prof. Dr. Bella Lake und Dr. Konrad Siemensmeyer ein eigenes CoreLab für Quantenmaterialien aufgebaut. Auch externe Forscherinnen und Forscher können dieses CoreLab nutzen und dabei von der Expertise des HZB-Teams profitieren.

Zucht und Vorbereitung von Einkristallen

Denn häufig liegen die Materialien nicht als große Einkristalle vor, sondern müssen erst als Pulver in winzigen Mikrokristallen hergestellt werden. Schon diese Synthese ist oft schwierig und ist deshalb ein zentrales Thema in diesem HZB-CoreLab. Aus diesen Pulverproben lassen sich dann mit einem leistungsstarken optischen Zonenschmelzofen größere Einkristalle ziehen, die deutlich aussagekräftigere Messungen erlauben. Die Zucht von Einkristallen aus Pulverproben erfordert viel Erfahrung, die am HZB vorhanden ist. Eine Laue-Apparatur ermöglicht es, diese Kristalle präzise auszurichten. Im Anschluss lassen sich die Kristalle dann für weitere Experimente mit einer Fadensäge orientiert schneiden oder ihre Flächen polieren. Die Methoden sind sehr flexibel und für alle möglichen Messungen einsetzbar. Proben für Neutronenexperimente, Experimente an BESSY II oder Laborexperimente sind hier leicht herzustellen. Weniger erfahrene Nutzer werden eng betreut, damit auch dort der Erfolg sichergestellt werden kann.

Transporteigenschaften und Phasenübergänge

In einem weiteren Raum stehen hohe magnetische Felder, tiefe Temperaturen mit zwei „Physical Property Measurement Systems“ sowie ein empfindliches SQUID-Magnetometer bereit. Damit lassen sich Transporteigenschaften wie die Wärmeleitfähigkeit, aber auch die Magnetisierung und spezifische Wärme von Materialien messen. Die Messung dieser Eigenschaften macht so genannte Phasenübergänge sichtbar. Diese Phasenübergänge hängen mit quantenphysikalischen Gesetzmäßigkeiten zusammen und zeigen an, dass sich im Innern der Materialien neue Ordnungen etablieren.

CoreLabs für Nutzer aus Forschung und Industrie

Als Betreiber von Großgeräten hat das HZB große Erfahrung mit der Organisation eines externen Nutzerbetriebs. Diese Erfahrung bringt das HZB nun auch in den Betrieb der CoreLabs ein, die mit modernsten, teilweise einzigartigen Instrumenten und Geräten für die Analyse und Synthese von Energiematerialien ausgestattet sind. Auch internationale Messgäste und Partner aus der Industrie sind hier willkommen.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.