Neue Helmholtz-Nachwuchsgruppe zur elektrochemischen Umwandlung von Kohlenstoffdioxid gestartet

Foto: privat

Foto: privat

Dr. Matthew T. Mayer baut seit Mai 2017 eine Helmholtz-Nachwuchsgruppe am HZB auf. Er will erforschen, wie sich mithilfe von erneuerbaren Energien Kohlenstoffdioxid und Wasser elektrochemisch in wertvolle Kohlenwasserstoffe umwandeln lassen. Für seine Forschung erhält er jährlich 300.000 Euro für einen Zeitraum von fünf Jahren.

Um den klimaschädlichen Ausstoß von Kohlenstoffdioxid zu reduzieren, gibt es mehrere Forschungsansätze. Eine Möglichkeit ist, erneuerbare Energien zu nutzen, um Kohlenstoffdioxid und Wasser elektrochemisch umzuwandeln. Dabei entstehen Kohlenwasserstoffe wie Methan, Methanol oder Ethylen, die wichtige Rohstoffe für die chemische Industrie sind. Die größte Herausforderung dabei ist, die Energieeffizienz, die Reaktionsgeschwindigkeit und die Ausbeute bei der CO2-Katalyse zu verbessern.

Die neue HZB-Nachwuchsgruppe will neuartige Elektrokatalyse-Materialien mit heterogenen Bimetall-Oberflächen herstellen. Die katalytischen Prozesse will Mayer mithilfe der Synchrotron-, Röntgen- und Photoelektronen-Spektroskopie in-situ und in operando untersuchen. Dadurch will der Chemiker neue Einblicke in katalytische Mechanismen und die Grundsätze der Zellenentwicklung gewinnen. Ein gezieltes Design von Katalysatoren soll so möglich werden. Die Forschung hilft dabei, das Potenzial der elektrochemischen CO2-Reduktion als mögliche Technologie für die Bereitstellung von Kohlenwasserstoffen auszuloten.

Zur Person

Der US-Amerikaner Matthew T. Mayer studierte Chemie an der Boise State University, USA, und promovierte am Boston Collage. Vor seinem Wechsel an das HZB leitete er an der École Polytechnique Fédérale de Lausanne die Gruppe „Solare Brennstoffe“ im Labor für Photonik und Grenzflächen. Zuvor arbeitete er mehrere Jahre am Boston College in den USA. Er hält zwei Patente und hat zahlreiche Publikationen veröffentlicht.

Das Förderprogramm "Helmholtz-Nachwuchsgruppe"

Das Förderprogramm richtet sich an hoch qualifizierte Nachwuchskräfte, deren Promotion zwei bis sechs Jahre zurückliegt. Die Nachwuchsgruppenleiterinnen und -leiter werden durch ein maßgeschneidertes Fortbildungs- und Mentoring-Programm unterstützt. Ein Ziel des Programms ist es, die Vernetzung von Helmholtz-Zentren und Universitäten zu stärken.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.