Neue Helmholtz-Nachwuchsgruppe zur elektrochemischen Umwandlung von Kohlenstoffdioxid gestartet
Dr. Matthew T. Mayer baut seit Mai 2017 eine Helmholtz-Nachwuchsgruppe am HZB auf. Er will erforschen, wie sich mithilfe von erneuerbaren Energien Kohlenstoffdioxid und Wasser elektrochemisch in wertvolle Kohlenwasserstoffe umwandeln lassen. Für seine Forschung erhält er jährlich 300.000 Euro für einen Zeitraum von fünf Jahren.
Um den klimaschädlichen Ausstoß von Kohlenstoffdioxid zu reduzieren, gibt es mehrere Forschungsansätze. Eine Möglichkeit ist, erneuerbare Energien zu nutzen, um Kohlenstoffdioxid und Wasser elektrochemisch umzuwandeln. Dabei entstehen Kohlenwasserstoffe wie Methan, Methanol oder Ethylen, die wichtige Rohstoffe für die chemische Industrie sind. Die größte Herausforderung dabei ist, die Energieeffizienz, die Reaktionsgeschwindigkeit und die Ausbeute bei der CO2-Katalyse zu verbessern.
Die neue HZB-Nachwuchsgruppe will neuartige Elektrokatalyse-Materialien mit heterogenen Bimetall-Oberflächen herstellen. Die katalytischen Prozesse will Mayer mithilfe der Synchrotron-, Röntgen- und Photoelektronen-Spektroskopie in-situ und in operando untersuchen. Dadurch will der Chemiker neue Einblicke in katalytische Mechanismen und die Grundsätze der Zellenentwicklung gewinnen. Ein gezieltes Design von Katalysatoren soll so möglich werden. Die Forschung hilft dabei, das Potenzial der elektrochemischen CO2-Reduktion als mögliche Technologie für die Bereitstellung von Kohlenwasserstoffen auszuloten.
Zur Person
Der US-Amerikaner Matthew T. Mayer studierte Chemie an der Boise State University, USA, und promovierte am Boston Collage. Vor seinem Wechsel an das HZB leitete er an der École Polytechnique Fédérale de Lausanne die Gruppe „Solare Brennstoffe“ im Labor für Photonik und Grenzflächen. Zuvor arbeitete er mehrere Jahre am Boston College in den USA. Er hält zwei Patente und hat zahlreiche Publikationen veröffentlicht.
Das Förderprogramm "Helmholtz-Nachwuchsgruppe"
Das Förderprogramm richtet sich an hoch qualifizierte Nachwuchskräfte, deren Promotion zwei bis sechs Jahre zurückliegt. Die Nachwuchsgruppenleiterinnen und -leiter werden durch ein maßgeschneidertes Fortbildungs- und Mentoring-Programm unterstützt. Ein Ziel des Programms ist es, die Vernetzung von Helmholtz-Zentren und Universitäten zu stärken.
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14667;sprache=de
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.