HZB und Freie Universität Berlin gründen gemeinsame Forschergruppe „Röntgenmikroskopie“, um komplexe Vorgänge in Zellen zu untersuchen

Im Mai startet die gemeinsame Forschergruppe „Röntgenmikroskopie“, in der die Teams von Prof. Dr. Gerd Schneider (Helmholtz-Zentrum Berlin) und Prof. Dr. Helge Ewers (Freie Universität Berlin) ihre Expertisen bündeln. Während Ewers‘ Gruppe ihre Erfahrung auf dem Gebiet der Lichtmikroskopie und der biologischen Grundlagenforschung einbringt, betreut die HZB-Arbeitsgruppe die Röntgenmikroskopie an der Synchrotronquelle BESSY II. Beide Methoden helfen Forscherinnen und Forschern, einen detaillierten Einblick in die Abläufe innerhalb von Zellen zu bekommen.

„Wir freuen uns sehr über die neue Kooperation mit der Arbeitsgruppe von Herrn Ewers. Unsere eigenen Aktivitäten auf diesem Gebiet erhalten dadurch eine stärkere Anbindung an die biologische Forschung der Universität“, sagt Prof. Dr. Gerd Schneider. Zu den Kernaufgaben seiner Abteilung am HZB gehört die Weiterentwicklung der Röntgenmikroskopie und -optiken an der Synchrotronquelle BESSY II. Durch den regen Austausch mit dem neuen Kooperationspartner werde die Methodenentwicklung neue Impulse erhalten, so Schneider. Auch Prof. Dr. Helge Ewers ist von der zukunftsweisenden Zusammenarbeit überzeugt: „Durch die Röntgenmikroskopie eröffnen sich für uns völlig neue Möglichkeiten in der Erforschung intrazellulärer Vorgänge.“

Die gemeinsame Forschergruppe setzt auf die komplementäre Nutzung von Licht- und Röntgenmikroskopie. Mit Lichtmikroskopie- und Super-Resolution-Verfahren lassen sich Proteine mit Farbmolekülen markieren und in den Zellproben sehr gut lokalisieren. Die Röntgenmikroskopie ermöglicht es korrelativ, die Verteilung von Proteinen, Viren oder Nanopartikeln in den Zellen in einem relativ großen Bildausschnitt mit hoher Auflösung dreidimensional darzustellen. Beide Mikroskopie-Verfahren liefern damit ein umfassendes Bild von innerzellulären Strukturen und Prozessen.

Nach einem erfolgreichen Upgrade steht das Röntgenmikroskop TXM an der Synchrotronquelle BESSY II seit kurzem wieder den Nutzerinnen und Nutzern zur Verfügung. Neben biologischen Untersuchungen, die jetzt gebündelt in der gemeinsamen Forschergruppe bearbeitet werden, nutzen HZB-Forschende das Röntgenmikroskop vor allem für Fragestellungen in der Energiematerialforschung.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.