Dr. Antonio Abate will mit neuer Helmholtz-Nachwuchsgruppe die Langzeitstabilität von Perowskit-Solarzellen verbessern

Dr. Antonio Abate

Dr. Antonio Abate

Dr. Antonio Abate baut seit Februar 2017 eine Helmholtz-Nachwuchsgruppe am HZB auf. Mit seinem Team will er Perowskit-Solarzellen weiterentwickeln, damit sie eine interessante Alternative zu den weitverbreiteten Silizium-Solarzellen werden. Dafür ist es nötig, ein besseres Verständnis der Grenzflächen von Perowskit-Solarzellen zu erhalten. Sein Ziel ist es, diese Zellen so zu optimieren, dass sie eine Lebensdauer von 25 Jahren haben.

Für seine Helmholtz-Nachwuchsgruppe „Aktive Materialien und Grenzflächen für stabile Perowskit-Solarzellen" erhält Antonio Abate 300.000 Euro pro Jahr über einen Zeitraum von fünf Jahren. Er forschte unter anderem an den Universitäten Oxford und Cambridge in Großbritannien. Anschließend ging er mit einem Marie-Skłodowska-Curie-Stipendium an die École Polytechnique Fédérale de Lausanne (EPFL), Schweiz. Vor seinem Wechsel an das HZB leitet er die Photovoltaik-Aktivitäten am Adolphe Merkle Institut der Universität Fribourg, Schweiz.

Solarzellen aus Perowskiten sind besonders vielversprechend: Das Material ist kostengünstig und Forschende konnten den Wirkungsgrad dieser Solarzellen in kurzer Zeit deutlich erhöhen. Damit die Zellen auch wirtschaftlich interessant sind, muss die Langzeitstabilität jedoch verbessert werden. „Mit meiner Gruppe möchte ich stabile Perowskit-Solarzellen mit einer Lebensdauer von mehr als 25 Jahren entwickeln. Dazu müssen wir die optoelektronischen Mechanismen, die für den Materialabbau in den Perowskit-Solarzellen verantwortlich sind, noch besser verstehen“, sagt der Nachwuchsforscher.

Antonio Abate will sowohl die grundlegenden Prinzipien als auch die Prozessierung dieser Solarzellen erforschen, um die Grenzflächen an den verschiedenen Schichten aktiv kontrollieren zu können. Dazu wird er mit international führenden Forschungsgruppen und Industriepartnern aus der Elektronik zusammenarbeiten, um die Technologieentwicklung – vom Material zum Bauteil bis hin zur gesamten PV-Anlage – tatsächlich vorantreiben zu können.

Über das Programm "Helmholtz-Nachwuchsgruppen"

Das Förderprogramm richtet sich an hoch qualifizierte Nachwuchskräfte, deren Promotion zwei bis sechs Jahre zurückliegt. Die Nachwuchsgruppenleiterinnen und -leiter werden durch ein maßgeschneidertes Fortbildungs- und Mentoring-Programm bei ihrer akademischen Laufbahn unterstützt. Das Programm stärkt zudem die Vernetzung von Helmholtz-Zentren und Universitäten. Mehr

(sz)


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.