Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad

Nanostrukturen fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials.

Nanostrukturen fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials. © Adv. Opt. Mat. 5/2017

Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte.

Eine interessante Klasse von Solarzellen besteht aus den Elementen Kupfer, Indium, Gallium und Selen, die in einer Chalkopyrit-Kristallstruktur angeordnet sind. Dünnschicht-CIGSe-Solarzellen können im Labor Wirkungsgrade von bis zu  22,6 Prozent erreichen und besitzen im Vergleich zu den marktführenden Solarmodulen aus Silizium einige Vorteile. Unter anderem lassen sie sich mit weniger Energie herstellen und haben geringere Einbußen bei Verschattung.

Indium eingespart

Die Massenproduktion von CIGSe-Zellen würde jedoch große Mengen Indium erfordern. Indium zählt aber zu den seltenen Elementen, deren Vorkommen weltweit begrenzt sind. Ein interessanter Ansatz ist daher, CIGSe-Dünnschichten noch deutlich dünner zu machen. Während eine typische CIGSe-Dünnschicht-Solarzelle 2-3 Mikrometer dick ist, misst eine „ultradünne“ Schicht weniger als 0,5 Mikrometer und kommt für die gleiche Modulfläche mit einem Bruchteil an Indium aus. Allerdings absorbieren ultradünne Solarzellen auch wesentlich weniger Licht, was den Wirkungsgrad stark verringert. 

Nanostrukturierte Rückkontakte fangen das Licht ein

Nun hat die Forschungsgruppe Nanooptix am HZB von Prof. Martina Schmid gezeigt, wie sich die Absorptionsverluste in ultradünnen CIGSe-Schichten größtenteils verhindern lassen. Gemeinsam mit dem Team von Prof. Albert Polman am Institute for Atomic and Molecular Physics (AMOLF), Niederlande, haben sie nanostrukturierte Rückkontakte entwickelt, die das Licht einfangen: Diese Nanostruktur besteht aus einem regelmäßigen Muster aus Siliziumoxidpartikeln auf einem ITO-Substrat.

Beste ultradünne Zelle kommt fast an Leistung einer "normalen" CIGSe-Dünnschicht heran

Kombiniert mit einer reflektierenden Schicht erreichte die beste ultradünne CIGSe-Zelle eine Kurzschlussstromdichte von 34,0 mA/cm2. Dies ist der bislang höchste Wert, der jemals an einer ultradünnen CIGSe-Zelle gemessen wurde. Mehr noch:  Dies entspricht bereits 93 Prozent der Kurzschlussstromdichte der Rekord-CIGSe-Zelle mit üblicher Dicke.

Nanostrukturen verbessern auch elektrische Eigenschaften

Außerdem verbessern die Nanostrukturen auch die elektrischen Eigenschaften der Zelle und steigern den Wirkungsgrad im Vergleich zu Zellen ohne nanostrukturierte Rückkontakte auf das Anderthalbfache. „Damit haben wir gezeigt, dass Nanostrukturen bei ultradünnen CIGSe-Solarzellen sowohl die optische Absorption verstärken als auch einige elektrische Aspekte günstig beeinflussen“, sagt  Guanchao Yin, Erstautor der Publikation. „Diese Ergebnisse belegen, dass optoelektronische Nanostrukturen eine interessante Möglichkeit sind, um hohe Wirkungsgrade mit deutlich weniger Materialeinsatz zu erreichen“, sagt Prof. Martina Schmid, die nun als Professorin für „Experimentelle Physik“ an die Universität Duisburg wechselt. „Mit der Nachwuchsgruppe habe ich die Chance erhalten, selbstständig zu forschen und meine Karriere zu starten. Dafür danke ich dem HZB und der Helmholtz-Gemeinschaft.“   

Die Arbeit ist in Advanced Optical Materials (5, 2017) veröffentlicht und auf der Titelseite erschienen.

Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

 

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.