HZB und Freie Universität Berlin bauen die gemeinsame Forschergruppe „Makromolekulare Kristallographie“ auf

Gemeinsame Nachwuchsausbildung: In Lehrveranstaltungen stellen Studierende Proben her und untersuchen sie an den MX-Beamlines von BESSY II. Foto: HZB

Gemeinsame Nachwuchsausbildung: In Lehrveranstaltungen stellen Studierende Proben her und untersuchen sie an den MX-Beamlines von BESSY II. Foto: HZB

Seit acht Jahren kooperiert die HZB-Arbeitsgruppe „Makromolekulare Kristallographie“ erfolgreich mit dem Lehrstuhl „Strukturbiochemie“ unter der Leitung von Prof. Markus Wahl an der Freien Universität Berlin. Nun wird sich diese Zusammenarbeit weiter intensivieren. Beide Einrichtungen bauen eine gemeinsame Forschergruppe auf, um biochemische Vorgänge bei der Verarbeitung von genetischen Informationen zu untersuchen. Die Forschergruppe profitiert dabei insbesondere vom Zugang zu den drei MX-Beamlines, an denen Proteinkristalle mit dem Synchrotronlicht von BESSY II untersucht werden können.

„Wir freuen uns sehr, dass unsere Arbeitsgruppe durch die Kooperationsvereinbarung eine intensive wissenschaftliche Anbindung bekommt, die sehr fruchtbar für alle Beteiligten sein wird“, sagt Dr. Manfred Weiss, Leiter der HZB-Gruppe „Makromolekulare Kristallographie“ bei der feierlichen Inauguration der Forschergruppe am 22. Februar 2017.

Während das HZB-Team vor allem an der Weiterentwicklung der Instrumentierung sowie an methodischen Aspekten der makromolekularen Kristallographie forscht, bringt die Gruppe der Freien Universität Berlin ihre Expertise auf dem Gebiet der Struktur-Funktionsbeziehungen bei der Genregulation ein. „Wir werden besonders vom Knowhow der HZB-Gruppe in kristallographischen Methoden der Wirkstoffentwicklung profitieren“, ist Prof. Dr. Markus Wahl überzeugt.

Die Teams von Freier Universität Berlin und Helmholtz-Zentrum Berlin kooperieren seit langem sehr erfolgreich miteinander und engagieren sich unter anderem in der Nachwuchsausbildung. Sie bieten gemeinsam mit dem Max-Delbrück-Zentrum für Molekulare Medizin eine methodische Lehrveranstaltung für Studierende an, in der die Teilnehmerinnen und Teilnehmer Proben herstellen und an MX-Beamlines von BESSY II untersuchen können. Dies ist eine in Deutschland einzigartige praktische Ausbildung für angehende Biochemiker. Die Absolventinnen und Absolventen sind gefragte Fachkräfte in einem für die Hauptstadtregion sehr wichtigen Forschungs- und Wirtschaftszweig.

Zu dieser Entwicklung entscheidend beigetragen hat das Joint MX-Laboratory, das seit 2010 die Expertisen von fünf Partnern bündelt: Forschende der Humboldt-Universität zu Berlin, der Freien Universität Berlin, des Max-Delbrück-Zentrums und des Forschungsinstituts für Molekulare Pharmakologie erhalten einfacheren Zugang zu den Kristallographie-Messplätzen an BESSY II und setzen gemeinsame Forschungsprojekte um. „Das Joint MX-Lab ist für alle Partner eine große Erfolgsgeschichte und soll fortgesetzt werden“, sagt Manfred Weiss.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.