Solare Wasserstofferzeugung: EU-Projekt PECSYS strebt technologischen Durchbruch an

Die Projektpartner haben sich Mitte Januar am HZB getroffen, um den „Startschuss“ zum Projekt zu geben.

Die Projektpartner haben sich Mitte Januar am HZB getroffen, um den „Startschuss“ zum Projekt zu geben. © J. Bierbaum/HZB

Entwicklung von Vorführsystemen mit bis zu zehn Quadratmetern Fläche

Das HZB koordiniert ein EU-Projekt, das innerhalb von vier Jahren eine wirtschaftlich umsetzbare Technologie für die solare Wasserstofferzeugung entwickeln soll. Die Solarenergie wird dadurch in chemische Energie umgewandelt und im Brennstoff Wasserstoff gespeichert. Dabei sollen die Kosten unter fünf Euro pro Kilogramm Wasserstoff liegen. Zum Abschluss planen die Partner aus Deutschland, Schweden und Italien den Aufbau mehrerer Module mit einer Gesamtfläche von zehn Quadratmetern, um Stabilität und Ertrag auf großer Fläche zu demonstrieren. Das Projekt läuft im Rahmen des EU-Forschungsprogramms Horizon2020 über vier Jahre und wird mit 2,5 Millionen Euro gefördert.

Die Photovoltaik deckt heute schon etwa 7,4 Prozent des Nettostrombedarfs, an sonnigen Wochenenden sogar bis zu 50 Prozent (Quelle: ISE). Doch nachts oder bei schlechtem Wetter liefern Solarzellen keinen Strom. Photovoltaikzellen  lassen sich jedoch auch mit Elektrokatalysatoren kombinieren, um Wasser in seine Elemente Wasserstoff und Sauerstoff aufzuspalten. Dieser solar erzeugte Wasserstoff ist ein vielseitiger Brennstoff, der die Energie des Sonnenlichts in chemischer Form speichert und sie bei Bedarf - z.B. nachts - über eine Brennstoffzelle wieder freisetzen kann. In den letzten Jahren hat die Forschung auf diesem Gebiet große Fortschritte erreicht. Jedoch gibt es – anders als bei der Photovoltaik – noch keinen groß angelegten Technologieansatz, der sich durchgesetzt hat. Mit anderen Worten: Das Rennen ist derzeit noch vollkommen offen. 

Partner aus Deutschland, Italien und Schweden

Dies soll das EU-Projekt PECSYS nun schaffen: Das Projekt wird durch das Kompetenzzentrum Photovoltaik am HZB koordiniert, dabei bringen Partner aus dem Forschungszentrum Jülich, der Universität Uppsala, Schweden, dem Consiglio Nazionale delle Richere, Italien sowie die Unternehmen Solibro Research AB, Schweden und 3SUN, Italien, ihre Expertise ein.

Wirkungsgrad 6 Prozent, 6 Monate stabil

„Die Ziele des Projektes sind ehrgeizig und sehr konkret“, erläutert HZB-Forscherin Dr. Sonya Calnan, Sprecherin des EU-Projekts. Das zu entwickelnde Vorführsystem soll auf einer Fläche von mehr als zehn Quadratmetern realisierbar sein, mehr als sechs Prozent der Solarenergie chemisch umwandeln und mindestens sechs Monate lang stabil funktionieren. Der so erzeugte Wasserstoff soll weniger als fünf Euro pro Kilo kosten. Zum Vergleich: Aktuell liegt der Marktpreis für Wasserstoff bei acht Euro pro Kilogramm.

Bauelement aus einem Block

Am PVcomB werden die beteiligten Projektteams Photovoltaikzellen aus unterschiedlichen Materialien (Silizium, Chalkogenide, Tandemsolarzellen aus Perowskit und Silizium) zusammen mit Elektrokatalysatoren und Membranen testen und auch geeignete Versiegelungen entwickeln. Ziel ist es, ein Bauelement aus „einem Block“ zu entwickeln, das auch bei extremen Umweltbedingungen noch einwandfrei funktioniert.

Mehr als zehn Kg Wasserstoff

Die beteiligten Projektteams wollen so ein System identifizieren, das sich für die industrielle Produktion eignet. Die Vorführsysteme  sollen dann am Forschungszentrum Jülich und/oder bei 3Sun mit einer Gesamtfläche von zehn Quadratmetern stehen und innerhalb von sechs Monaten mehr als zehn Kilogramm Wasserstoff erzeugen.

Das Projekt wird von „Fuel Cells and Hydrogen 2 Joint Undertaking“ unter der Nummer 735218 gefördert. Joint Undertaking wird unterstützt durch das Horizon 2020 und Innovationsprogramm der europäischen Union, Hydrogen Europe und N.ERGHY.

> PECSYS Homepage

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.