7,4 Millionen Euro aus dem EFRE-Fonds: HZB baut neues Anwendungslabor für die Entwicklung supraleitender Beschleunigerkomponenten auf

Das Anwendungslabor SupraLab@HZB wird mit Mitteln aus dem EFRE-Fonds gefördert.

Das Anwendungslabor SupraLab@HZB wird mit Mitteln aus dem EFRE-Fonds gefördert.

Vertikal-Teststand für supraleitende Kavitäten im SupraLab@HZB. Die Forscherinnen und Forscher wollen im neuen Anwendungslabor nicht nur Kavitäten, sondern auch einbaufähige Module entwickeln.

Vertikal-Teststand für supraleitende Kavitäten im SupraLab@HZB. Die Forscherinnen und Forscher wollen im neuen Anwendungslabor nicht nur Kavitäten, sondern auch einbaufähige Module entwickeln.

Das Helmholtz-Zentrum Berlin erhält 7,4 Millionen Euro aus dem Europäischen Fonds für Regionale Entwicklung (EFRE). Mit dem Geld wird das Anwendungslabor „SupraLab@HZB“ zur Weiterentwicklung von supraleitenden Hochstrom-Kavitäten aufgebaut. Solche Komponenten werden für den Betrieb von neuartigen, leistungsfähigen Synchrotronquellen der nächsten Generation benötigt. Das Labor wird auch komplexe Testvorrichtungen für supraleitende Komponenten bereitstellen, die Unternehmen und Forschungsinstitute der Region nutzen können.

„Wir freuen uns sehr über die Förderung aus dem EFRE-Fonds und danken insbesondere dem Land Berlin für die Unterstützung unseres Antrags. Mit dem SupraLab@HZB werden wir Meilensteine in der Entwicklung einer zukunftsweisenden Beschleunigertechnologie erreichen. Der Aufbau des Applikationslabors schafft Know-how für zukünftige Beschleuniger und neuartige Lichtquellen. Die Entwicklung dieser Schlüsseltechnologie bietet für den Forschungs- und Industriestandort Berlin auch wirtschaftlich attraktive Möglichkeiten“, sagt Prof. Dr. Anke Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin des HZB.   

Beim Aufbau des neuen Applikationslabors bringt das HZB seine international anerkannte Expertise bei der Entwicklung von Dauerstrich (CW, continuous wave)-supraleitenden Beschleuniger­komponenten ein. „Der Vorteil dieser CW-supraleitenden Kavitäten ist, dass ein sehr hohes Beschleunigungsfeld dauerhaft anliegt und gleichzeitig die Freiheit besteht, die Geometrie für Hochstrombetrieb zu optimieren. Dadurch kann nicht nur ein hoher Elektronenstrom beschleunigt werden, sondern auch die Zeitstruktur (Pulsfolge) des Stroms ist nahezu frei wählbar. Mit der EFRE-Förderung haben wir nun die Möglichkeit, diese Technologie substanziell weiterzuentwickeln, bis sie in Lichtquellen einsatzfähig ist“, sagt Prof. Dr. Jens Knobloch, Leiter des HZB-Instituts „SRF-Wissenschaft und Technologie“ (ISRF), das die wissenschaftlich-technische Leitung für das SupraLab übernommen hat.

Diese Technologie wollen die HZB-Forscherinnen und Forscher beim Ausbau von BESSY II zu einem variablen Pulslängenspeicherring BESSY VSR nutzen. Erstmalig sollen dabei supraleitende Hochstrom-Kavitäten eingesetzt werden, um gleichzeitig lange und sehr kurze Elektronenpulse (im Bereich von einer Pikosekunde) von hoher Brillanz in einem Speicherring zu erzeugen. Von der flexibel wählbaren Pulslänge werden viele Forschungsfragen profitieren. So lassen sich etwa Materialien für die Energieumwandlung oder für die künftige energieeffizientere Datenspeicherung (Spintronik) umfassender als bisher untersuchen und weiterentwickeln.

Im SupraLab@HZB wollen die Forscherinnen und Forscher nicht nur die Kavitäten, sondern komplette, einbaufähige Module entwickeln und qualifizieren. Die Entwicklung dieser supraleitenden Module ist jedoch mit einem erheblichen technischen Aufwand verbunden. Deshalb wird im SupraLab@HZB eine komplexe Infrastruktur zum Testen der Kavitäten und Systeme aufgebaut. Unter anderem sind Investitionen in die Kryo-Anlage und in Hochfrequenzsendeanlagen geplant. Nach Fertigstellung soll das Applikationslabor den Technologietransfer und die Zusammenarbeit mit regionalen und nationalen Unternehmen nachhaltig fördern.

Das Projekt wird seit 1. Januar 2017 aus dem Europäischen Fonds für regionale Entwicklung gefördert und läuft bis Ende 2019. Das Helmholtz-Zentrum Berlin trägt einen Eigenanteil in gleicher Höhe.

Videos: BESSY VSR und die Herausforderungen

- Über das Projekt BESSY VSR

- über das zugrundeliegende Prinzip von BESSY VSR und das Problem

Webseite zum Zukunftsprojekt: BESSY VSR - variabler Pulslängenspeicherring

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.