Prof. Dr. Martina Schmid übernimmt Professur für Experimentelle Physik an der Universität Duisburg-Essen

Prof. Dr. Martina Schmid

Prof. Dr. Martina Schmid

Martina Schmid hat am 1. Januar 2017 die W2-Professur für „Experimentelle Physik“ im Fachbereich Physik an der Universität Duisburg Essen angetreten. Von 2012 bis Ende 2016 leitete die Forscherin am HZB die Helmholtz-Nachwuchsgruppe „Nanooptische Konzepte für die Photovoltaik“.

„Ich freue mich auf meine neue Aufgabe an der Universität Duisburg-Essen, weil sie mir die Möglichkeit eröffnet, meine Forschungsthemen im Bereich der Solarenergie weiterzuführen und neue Ideen zu entfalten“, sagt Martina Schmid bei ihrem Arbeitsbeginn an der Universität Duisburg-Essen.

Bis zu ihrem Wechsel erforschte Martina Schmid mit ihrem Team am HZB nanooptische Konzepte für Chalkopyrit-Solarzellen. Diese Solarzellen erzielen bereits hohe Wirkungsgrade, jedoch werden für ihre Herstellung seltene und teure Materialien benötigt. Das Ziel der Nachwuchsgruppe war deshalb, den Materialeinsatz dieser Elemente in Chalkopyrit-Solarzellen zu reduzieren und gleichzeitig den Wirkungsgrad zu erhalten bzw. zu erhöhen.

„Es ist uns gelungen, durch die Integration von Nanostrukturen in ultra-dünne CIGSe-Solarzellen einen signifikanten Anstieg der Kurzschlussstromdichte nachzuweisen. In Kooperation mit dem Institute for Atomic and Molecular Physics AMOLF, Niederlande, konnten wir bis zu 93 Prozent des maximal von einer dicken CIGSe-Solarzellen erreichten Wertes erzielen“, sagt Martina Schmid. Beim Kurzschlussstrom handelt es sich um die maximale Stromstärke, die eine Solarzelle oder ein Photovoltaikmodul erbringen kann.

Weiterhin gelang es der HZB-Nachwuchsgruppe um Martina Schmid in einem Projekt mit der Bundesanstalt für Materialforschung und -prüfung (BAM) und dem Leibniz-Institut für Kristallzüchtung (IKZ), CISe-Absorber für den Einsatz unter Lichtkonzentration lokal herzustellen und dabei den Materialeinsatz der seltenen Elemente erheblich zu reduzieren.

Martina Schmid wird die Mitarbeiterinnen und Mitarbeiter aus ihrer ehemaligen Nachwuchsgruppe weiterhin bis zu ihren Abschlussarbeiten fachlich betreuen.

Zur Person:

Prof. Dr. Martina Schmid studierte Physik an der Universität Augsburg und promovierte über die Optimierung von Tandemsolarzellen auf der Basis von Chalkopyriten am HZB. Dafür erhielt sie mehrere Preise, unter anderem den Carl-Ramsauer-Preis der Deutschen Physikalischen Gesellschaft zu Berlin. Nach einem Forschungsaufenthalt am „California Institute of Technology - Caltech“ baute sie 2012 ihre Helmholtz-Nachwuchsgruppe am HZB auf.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • 13 junge Menschen starten am HZB ins Berufsleben
    Nachricht
    05.09.2024
    13 junge Menschen starten am HZB ins Berufsleben
    Am 2. September fing für 13 junge Menschen ein neuer Lebensabschnitt an: Das HZB begrüßte fünf neue Auszubildende, sechs Studierende in dualen Studiengängen und zwei Teilnehmende an einem Freiwilligen Naturwissenschaftlichen Jahr, die mit viel Vorfreude ins Berufsleben starten.

  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.