Forschen für die Energiewende: EMIL@BESSY II startklar für das Kopernikus Projekt „Power-to-X“

Das neue Energy Materials in situ Laboratory (EMIL) mit direktem Zugang zum Röntgenlicht von BESSY II wurde am 31. Oktober eröffnet.

Das neue Energy Materials in situ Laboratory (EMIL) mit direktem Zugang zum Röntgenlicht von BESSY II wurde am 31. Oktober eröffnet. © HZB

Das Speichern von Überschussstrom aus Solar- und Windenergie zählt zu den großen Herausforderungen der Energiewende. Daher hat das Bundesministerium für Bildung und Forschung (BMBF) das Kopernikus-Projekt „Power-to-X“ (P2X) aufgesetzt, um Forschungsprojekte zur Umwandlung von elektrischer Energie aus Sonne und Wind in chemische Grundstoffe, gasförmige Energieträger und Kraftstoffe voran zu bringen. An dem Forschungsvorhaben beteiligt sich auch das Helmholtz-Zentrum Berlin. Mit dem jetzt eröffneten Laborkomplex EMIL@BESSY II stehen einzigartige Synthese- und Analytiktools mit direktem Zugang zum Röntgenlicht von BESSY II zur Verfügung. Insgesamt sind 17 Forschungseinrichtungen, 26 Industrieunternehmen sowie drei zivilgesellschaftliche Organisationen eingebunden. In der ersten Entwicklungsphase fördert das BMBF das Projekt mit 30 Millionen Euro.

Strom aus Sonne oder Wind fluktuiert mit dem Wetter, der Tages- und Jahreszeit. Daher ist eine der wichtigsten Bedingungen für eine erfolgreiche Energiewende, effiziente Speicherlösungen zu entwickeln. Mit dem Kopernikus-Projekt „Power-to-X“ (P2X) will das BMBF Technologien vorantreiben, die den Überschussstrom aus Sonne oder Wind elektrochemisch in gasförmige Energieträger (wie z.B. Wasserstoff) oder chemische Grundstoffe umwandeln, die im Anschluss gespeichert oder zu Treibstoffen und Chemieprodukten weiterverarbeitet werden können. Solche P2X-Technologien werden einen zentralen Beitrag zur Energiewende leisten. Das Kopernikus-Projekt P2X soll innerhalb von zehn Jahren neue technologische Entwicklungen zur industriellen Reife bringen.

Das HZB stellt mit dem gerade eröffneten Energy Materials In-Situ Laboratory Berlin (EMIL) einmalige Synthese- und Charakterisierungsmöglichkeiten zur Verfügung. Die Arbeitsgruppen von Prof. Bernd Rech und Prof. Marcus Bär sind daher an dem Projekt beteiligt: „Innerhalb des Projektes werden wir die vielseitigen und komplementären Analysemöglichkeiten im EMIL-Labor nutzen, um die chemischen und elektronischen Eigenschaften der von den Projektpartnern entwickelten Katalysatoren zu untersuchen“, erläutert Marcus Bär, der die P2X-Aktivitäten am HZB koordiniert.

Ein wesentliches Augenmerk wird darauf liegen, wie sich die Katalysatormaterialien im Elektrolyten unter realen Arbeitsbedingungen ändern. Dies ist entscheidend, da die katalytisch aktive Spezies oft erst im Betrieb generiert wird. Ihre Stabilität bestimmt dann auch die Alterung und damit die Lebensdauer des Elektrolyseurs. „Wir werden im Rahmen des Kopernikus-Projekts die experimentellen Anlagen des EMIL-Labors nochmal erweitern, um solche ‚operando‘ Untersuchungen unter echten atmosphärischen Bedingungen zu ermöglichen“, führt er aus.

Zusätzlich zur Förderung durch das BMBF bringen Industriepartner Forschungsleistungen im Umfang von weiteren 8,3 Millionen Euro ein. Mit P2X wird ein Forschungsverbund aufgebaut, der bestehende Großprojekte und vorhandene Infrastrukturen mit einbezieht und Schnittstellen zur Industrie ausbaut. Das Projekt wird von der RWTH Aachen, dem Forschungszentrum Jülich und der DECHEMA gemeinsam koordiniert.

 

Weitere Informationen auf der BMBF-Webseite: https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.