Aus der Forschung der Nutzer: Wie Wasser Glas bewegt

Eine neue Generation von Sensoren: die Schuppen des "versteinerten" Kiefernzapfens biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück.

Eine neue Generation von Sensoren: die Schuppen des "versteinerten" Kiefernzapfens biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück. © WZS

Pflanzen nutzen Kapillarkräfte, um Flüssigkeit hochzuziehen. Dafür besitzen sie ein Netz aus dünnen Röhren (Kapiilaren), das auch dafür sorgt, dass sich das Material bei Flüssigkeitsaufnahme ausdehnt. Auch bei Zapfen von Nadelbäumen verhält es sich so. Ein Team am Lehrstuhl für Biogene Polymere der Technischen Universität München (TUM) am Wissenschaftszentrum Straubing (WZS) hat nun die pflanzlichen Bestandteile durch Silikatglas ersetzt. Dabei stellten sie fest, dass sich auch die Schuppen des künstlich versteinerten Zapfens bei Aufnahme von Feuchtigkeit bewegen. Untersuchungen an der Synchrotronquelle BESSY II in Berlin zeigten, dass die innere Struktur des Kiefernzapfens auch im fossilisierten Zustand bin in den Nanometerbereich erhalten bleibt. Die Arbeit legt Grundlagen für eine neue Generation von Sensoren.

Mit einem speziellen Verfahren lassen sich Kiefernzapfen künstlich versteinern. Dabei werden die biologischen Bestandteile vollständig in das technische Material Silikatglas umgewandelt. „Wir haben ein zuvor entwickeltes und verfeinertes ‚Bio-Templatierungsverfahren‘ zum ersten Mal für die Herstellung eines Materials mit strukturbasierter Funktion verwendet“, sagt Dr. Daniel Van Opdenbosch vom WZS. Aufwändige Untersuchungen an der Synchrotronquelle BESSY II in Berlin zeigten, dass dabei die innere Struktur des Kiefernzapfens erhalten blieb. Vor allem wurde der Zapfen durch das neue Templatierungsverfahren komplett versteinert bis hinunter auf die Ebene von millionstel Millimetern.

„Wir konnten zeigen, dass sich der transformierte Körper wie sein biologisches Original bei Feuchtigkeitsaufnahme bewegt“, erklärt Van Opdenbosch weiter, „die Schuppen der versteinerten Zapfen biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück in ihre Ausgangsposition.“ Durch das genaue Abformen von Pflanzenstrukturen bei Erhalt ihrer charakteristischen Eigenschaften versprechen sich die Wissenschaftler neue Möglichkeiten bei der Entwicklung von Funktionsmaterialien.

Sensoren mit geringem Technikaufwand herstellbar

Basierend auf den bisherigen Ergebnissen könnten poröse keramische, mehrlagige Sensoren mit relativ geringem technischem Aufwand produziert werden. Diese neuen Sensoren reagieren auf Feuchtigkeitsveränderung mit Bewegung. Damit ließen sie sich in chemisch aggressiven und physikalisch anspruchsvollen Umgebungen einsetzen, um verlässlich messen, schalten und steuern zu können.

Herkömmliche bimetallische oder zweilagige Aktuatoren sind wegen ihrer Zusammensetzung aus Metallen oder Kunststoffen anfällig für eine Zersetzung durch Korrosion, Säuren und Basen, Oxidation, hohe Temperaturen und Strahlung. Gegen alle diese Einflüsse sind Keramikoxide im besonderen Maße widerstandsfähig.

Das Projekt „Hierarchically structured porous ceramics and composites from nanocasting of plant cell walls“ wurde im Rahmen des Schwerpunktprogramms 1420 „Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials“ durch die Deutsche Forschungsgemeinschaft gefördert.

Beteiligt waren das Straubinger Team um Daniel Van Opdenbosch, eine Gruppe vom Institut für Physik der österreichischen Montanuniversität Leoben und ein Team vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam.

Die Forschungsergebnisse sind im Fachjournal „Advanced Materials“ 2016, DOI 10.1002/adma.201600117 publiziert.

Die Originalinfo aus dem WZS finden Sie hier:

Tipp: Zu diesem Thema gibt es ein anschauliches Video

TU München/WZS


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.