Zwei Freigeist-Fellows am HZB verflechten ihre Forschung

Fabian Weber (rechts) untersucht nun im Team von Dr. Annika Bande (links) die Dynamik von Elektronen-Prozessen in Graphen-Oxid-Quantenpunkten. Solche Quantenpunkte könnten als Katalysatoren die solare Wasserspaltung effizienter machen. Mit den theoretischen Modellierungen von Weber lassen sich aus den experimentellen Daten der Gruppe um Dr. Tristan Petit sehr viel mehr Informationen gewinnen.

Fabian Weber (rechts) untersucht nun im Team von Dr. Annika Bande (links) die Dynamik von Elektronen-Prozessen in Graphen-Oxid-Quantenpunkten. Solche Quantenpunkte könnten als Katalysatoren die solare Wasserspaltung effizienter machen. Mit den theoretischen Modellierungen von Weber lassen sich aus den experimentellen Daten der Gruppe um Dr. Tristan Petit sehr viel mehr Informationen gewinnen. © HZB

Eine erste Berechnung zeigt, wie sich die Elektronendichte über einem Graphen-Oxid-Nanopartikel in Lösung verändert: In den roten Bereichen ist die Elektronendichte unterdurchschnittlich, während sie in den blauen Regionen überdurchschnittlich groß ist. Das Graphen-Partikel ist aus Kohlenstoffatomen (schwarz) gebildet, an die stellenweise Sauerstoff (rot) oder Wasserstoff (weiß) andockt.

Eine erste Berechnung zeigt, wie sich die Elektronendichte über einem Graphen-Oxid-Nanopartikel in Lösung verändert: In den roten Bereichen ist die Elektronendichte unterdurchschnittlich, während sie in den blauen Regionen überdurchschnittlich groß ist. Das Graphen-Partikel ist aus Kohlenstoffatomen (schwarz) gebildet, an die stellenweise Sauerstoff (rot) oder Wasserstoff (weiß) andockt. © Fabian Weber

Am HZB-Institut für Methoden der Materialentwicklung forschen zwei Freigeist-Fellows, die von der VolkswagenStiftung gefördert werden: Die theoretische Chemikerin Dr. Annika Bande modelliert schnelle Elektronen-Prozesse und Dr. Tristan Petit untersucht Nanoteilchen aus Kohlenstoff. Nun konnte Annika Bande mit einem  Modulantrag bei der VolkswagenStiftung zusätzlich 150.000 Euro für eine weitere dreijährige Doktorandenstelle einwerben. Die Doktorarbeit wird beide Freigeist-Vorhaben miteinander verknüpfen.

Der Doktorand Fabian Weber arbeitet in der Theoriegruppe von Annika Bande und soll in den nächsten drei Jahren den Elektronentransfer in einem Materialsystem berechnen, das Tristan Petit und sein Team experimentell untersuchen. „Wir konzentrieren uns auf eine besondere Klasse von so genannten Quantenpunkten aus Graphen-Oxid-Nanoteilchen“, sagt Weber. Die Gruppe um Petit wird Nano-Graphen-Oxide mit verschiedenen spektroskopischen Methoden analysieren.

Katalysatoren für die Solare Wasserstofferzeugung

Denn Nanopartikel aus Graphen-Oxiden gelten als gute Katalysatoren, auch um mit Sonnenenergie Wasser aufzuspalten und Wasserstoff zu erzeugen. Wasserstoff ist ein vielseitiger Energieträger, der als Brennstoff nutzbar ist oder in einer Brennstoffzelle umweltfreundlich Strom erzeugen kann.

Tiefere Einsichten in das System

Mithilfe der theoretischen Modellierungen können die experimentellen Daten zu Nano-Graphen-Oxiden deutlich mehr Informationen liefern, bis hin zu neuen Einblicken in die ultraschnelle Dynamik bei den Wasserstoffbrückenbindungen. „Dabei gehen wir zunächst von bestehenden Theorien aus, und schauen uns an, wie wir damit modellieren können, was bei der Übertragung von Elektronen während einer katalytischen Reaktion genau geschieht“, erklärt Annika Bande. „Bei diesem Forschungsprojekt können wir unsere Ideen direkt mit den experimentellen Befunden abgleichen und das System besser verstehen lernen. Außerdem handelt es sich um ein Thema von großer Relevanz, nicht nur für die Grundlagenforschung, sondern auch für die künftige Energieversorgung unserer Gesellschaft.“

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.