Spintronik: Effizientes Materialsystem für die wärmeunterstützte Datenspeicherung

Die Membran besitzt Poren im Abstand von 105 Nanometern, die als Haftstellen für die magnetischen Domänenwände wirken.

Die Membran besitzt Poren im Abstand von 105 Nanometern, die als Haftstellen für die magnetischen Domänenwände wirken. © HZB

Auf der Membran liegt eine extrem d&uuml;nne Schicht aus Dysprosium-Kobalt (gr&uuml;n). Die magnetischen Momente des DyCo<sub>5</sub>-Films ragen senkrecht aus der Ebene heraus. Durch ein &auml;u&szlig;eres Magnetfeld lassen sie sich nicht umorientieren, Daten sind so stabil gespeichert. Mit einem Laser k&ouml;nnte ein einzelnes Bit lokal erw&auml;rmt werden.

Auf der Membran liegt eine extrem dünne Schicht aus Dysprosium-Kobalt (grün). Die magnetischen Momente des DyCo5-Films ragen senkrecht aus der Ebene heraus. Durch ein äußeres Magnetfeld lassen sie sich nicht umorientieren, Daten sind so stabil gespeichert. Mit einem Laser könnte ein einzelnes Bit lokal erwärmt werden. © HZB

Dabei gen&uuml;gt eine Erw&auml;rmung auf nur ca 80 Grad Celsius, um das magnetische Moment in die Ebene zu kippen. Nach dem Abk&uuml;hlen bleibt dieses Moment in der Ebene, bis es durch einen Schreibkopf neu ausgerichtet wird.

Dabei genügt eine Erwärmung auf nur ca 80 Grad Celsius, um das magnetische Moment in die Ebene zu kippen. Nach dem Abkühlen bleibt dieses Moment in der Ebene, bis es durch einen Schreibkopf neu ausgerichtet wird. © HZB

Ein HZB-Team hat Dünnschichten aus Dysprosium-Kobalt über einer nanostrukturierten Membran an BESSY II untersucht. Sie zeigten, dass eine Erwärmung auf nur 80 Grad Celsius ausreicht, um die Magnetisierung von winzigen Nano-Regionen neu auszurichten. Dies ist weit weniger als bislang für die wärmeunterstützte magnetische Datenspeicherung (Heat Assisted Magnetic Recording) nötig war. Ziel dieser Forschung sind schnelle und energieeffiziente Datenspeicher, die mehr Informationen auf kleinster Fläche speichern. Die Ergebnisse sind in dem neuen Fachjournal Physical Review Applied veröffentlicht.

Nun hat jedoch ein HZB-Team ein neues Materialsystem aus Dysprosium und Kobalt untersucht, das gleich mehrere Vorteile verspricht: deutlich niedrigere Schreibtemperatur, höhere Stabilität der magnetischen Bits und bessere Kontrolle der Spin-Ausrichtung in den einzelnen magnetischen Bits. Sie sputterten dafür einen extrem dünnen Film aus DyCo5 über einer nanostrukturierten Membran auf. Die Membran wurde von Kooperationspartnern vom Institut für Materialwissenschaften, Madrid, hergestellt. Sie besitzt Poren mit Durchmessern von 68 Nanometern, die in einem Wabenmuster im Abstand von 105 Nanometern angeordnet sind. Die Nanoporen wirken als Haftstellen für die magnetischen Domänen und stabilisieren sie. Die magnetischen Momente sind senkrecht zur Ebene ausgerichtet und stabil gegenüber äußeren Magnetfeldern, lassen sich also nicht einfach überschreiben.

Überschreiben ist energieeffizient und schnell

Der HZB-Physiker Dr. Jaime Sánchez-Barriga und sein Team zeigten nun, dass in diesem System eine Erwärmung auf nur 80 Grad Celsius ausreicht, um die lokalen magnetischen Momente um 90 Grad zu kippen, so dass sie parallel zur Ebene ausgerichtet sind. Mit Messungen am PEEM und am XMCD-Messplatz konnte die Gruppe die lokale Ausrichtung der magnetischen Signale vor, während und nach der Erwärmung präzise kartieren. Nach dem Abkühlen lassen sich die magnetischen Domänen mit einem magnetischen Schreibkopf neu überschreiben.  „Dieser Prozess ist in DyCo5 sehr energieeffizient und schnell“, stellt Dr. Florin Radu, Ko-Autor der Studie, fest. „Unsere Ergebnisse zeigen, dass es alternative HAMR-Kandidaten gibt, die für die Datenspeicherung deutlich weniger Energie benötigen und außerdem weitere Vorteile besitzen“, sagt Sánchez-Barriga.

Zur Publikation:Ferrimagnetic DyCo5 nanostructures for bits in heat-assisted magnetic recording.  A. A. Ünal, S. Valencia, F.  Radu, D. Marchenko, K. J. Merazzo, M. Vázquez, and J. Sánchez-Barriga, Phys. Rev. Applied 5, 064007
Doi: http://dx.doi.org/10.1103/PhysRevApplied.5.064007

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.