Spintronik für künftige energieeffiziente Informationstechnologien: Spin-Ströme in Topologischen Isolatoren kontrolliert

Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberflächenebene der Probe heraus (Mitte). Dies lässt sich mit einem linear polarisierten zweiten Puls nachweisen (oben).

Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberflächenebene der Probe heraus (Mitte). Dies lässt sich mit einem linear polarisierten zweiten Puls nachweisen (oben).

Ein internationales Team um den HZB-Forscher Jaime Sánchez-Barriga hat gezeigt, wie sich in Proben aus einem Topologischen Isolator-Material spinpolarisierte Ströme gezielt in Gang setzen lassen. Zudem konnten sie die Ausrichtung der Spins in diesen Strömen kontrollieren. Damit demonstrierten sie, dass sich diese Materialklasse dafür eignet, mithilfe von Spins Daten zu verarbeiten. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet.

Künftige Informationstechnologien sollen Daten mit deutlich weniger Einsatz von Energie verarbeiten. Eine spannende Materialklasse dafür sind Topologische Isolatoren. Sie zeichnen sich dadurch aus, dass ihre Elektronen an der Oberfläche extrem beweglich sind und das Material dort leitfähig ist. Im Innern ist es dagegen ein Isolator, dort leitet es keinen Strom.

Da Elektronen gleichzeitig auch ein magnetisches Moment tragen (Spin), könnten Topologische Isolatoren auch „spintronische“ Bauelemente ermöglichen: diese basieren nicht mehr wie Halbleiterbauelemente auf der Bewegung von Ladungsträgern wie Elektronen, sondern auf dem Transport oder der Manipulation ihrer Spins. Um damit zu schalten, wird deutlich weniger Energie benötigt.

Nun hat ein internationales Team um den HZB-Physiker Jaime Sánchez-Barriga  gezeigt, wie sich in Topologischen Isolatoren die Spins der Elektronen ausrichten und kontrollieren lassen. Sie untersuchten Proben aus dem Topologischen Isolator Antimon-Tellurid mit zirkular polarisiertem Laserlicht. Über die „Drehrichtung“ des Laserlichts konnten sie Elektronen-Ströme mit parallel ausgerichteten Spins (spinpolarisiert) gezielt in Gang setzen und lenken. Zudem gelang es ihnen, die Ausrichtung der Spins zu verändern. Am Team waren Experimentatoren vom Berliner Max-Born-Institut, der Lomonossow Universität Moskau und Theoretiker von der LMU München beteiligt. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet.

„Wenn man magnetisch dotierte topologische Isolatoren verwenden würde, könnte man die Spininformation vermutlich auch speichern“, erklärt Oliver Rader, der am HZB die Abteilung für grüne Spintronik leitet. „Um das zu untersuchen und dabei auch insbesondere das dynamische Verhalten der magnetischen Momente zu erkunden, werden aber ultrakurze
Lichtpulse im weichen Röntgenbereich benötigt. Mit dem geplanten Upgrade der Synchrotronquelle BESSY II zu BESSY VSR können solche Experimente in Zukunft zum Standard werden.“

Zur Publikation:

Ultrafast spin-polarization control of Dirac fermions in topological insulators, J. Sánchez-Barriga, E. Golias, A. Varykhalov, J. Braun, L. V. Yashina, R. Schumann, J. Minár, H. Ebert, O. Kornilov, and O. Rader
Phys. Rev. B 93, 155426
DOI: http://dx.doi.org/10.1103/PhysRevB.93.155426


Link zur Besprechung in PhysRevB (Editor's Suggestion)

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.