Spintronik für künftige energieeffiziente Informationstechnologien: Spin-Ströme in Topologischen Isolatoren kontrolliert

Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberflächenebene der Probe heraus (Mitte). Dies lässt sich mit einem linear polarisierten zweiten Puls nachweisen (oben).

Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberflächenebene der Probe heraus (Mitte). Dies lässt sich mit einem linear polarisierten zweiten Puls nachweisen (oben).

Ein internationales Team um den HZB-Forscher Jaime Sánchez-Barriga hat gezeigt, wie sich in Proben aus einem Topologischen Isolator-Material spinpolarisierte Ströme gezielt in Gang setzen lassen. Zudem konnten sie die Ausrichtung der Spins in diesen Strömen kontrollieren. Damit demonstrierten sie, dass sich diese Materialklasse dafür eignet, mithilfe von Spins Daten zu verarbeiten. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet.

Künftige Informationstechnologien sollen Daten mit deutlich weniger Einsatz von Energie verarbeiten. Eine spannende Materialklasse dafür sind Topologische Isolatoren. Sie zeichnen sich dadurch aus, dass ihre Elektronen an der Oberfläche extrem beweglich sind und das Material dort leitfähig ist. Im Innern ist es dagegen ein Isolator, dort leitet es keinen Strom.

Da Elektronen gleichzeitig auch ein magnetisches Moment tragen (Spin), könnten Topologische Isolatoren auch „spintronische“ Bauelemente ermöglichen: diese basieren nicht mehr wie Halbleiterbauelemente auf der Bewegung von Ladungsträgern wie Elektronen, sondern auf dem Transport oder der Manipulation ihrer Spins. Um damit zu schalten, wird deutlich weniger Energie benötigt.

Nun hat ein internationales Team um den HZB-Physiker Jaime Sánchez-Barriga  gezeigt, wie sich in Topologischen Isolatoren die Spins der Elektronen ausrichten und kontrollieren lassen. Sie untersuchten Proben aus dem Topologischen Isolator Antimon-Tellurid mit zirkular polarisiertem Laserlicht. Über die „Drehrichtung“ des Laserlichts konnten sie Elektronen-Ströme mit parallel ausgerichteten Spins (spinpolarisiert) gezielt in Gang setzen und lenken. Zudem gelang es ihnen, die Ausrichtung der Spins zu verändern. Am Team waren Experimentatoren vom Berliner Max-Born-Institut, der Lomonossow Universität Moskau und Theoretiker von der LMU München beteiligt. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet.

„Wenn man magnetisch dotierte topologische Isolatoren verwenden würde, könnte man die Spininformation vermutlich auch speichern“, erklärt Oliver Rader, der am HZB die Abteilung für grüne Spintronik leitet. „Um das zu untersuchen und dabei auch insbesondere das dynamische Verhalten der magnetischen Momente zu erkunden, werden aber ultrakurze
Lichtpulse im weichen Röntgenbereich benötigt. Mit dem geplanten Upgrade der Synchrotronquelle BESSY II zu BESSY VSR können solche Experimente in Zukunft zum Standard werden.“

Zur Publikation:

Ultrafast spin-polarization control of Dirac fermions in topological insulators, J. Sánchez-Barriga, E. Golias, A. Varykhalov, J. Braun, L. V. Yashina, R. Schumann, J. Minár, H. Ebert, O. Kornilov, and O. Rader
Phys. Rev. B 93, 155426
DOI: http://dx.doi.org/10.1103/PhysRevB.93.155426


Link zur Besprechung in PhysRevB (Editor's Suggestion)

arö


Das könnte Sie auch interessieren

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.