Spintronics for future information technologies: spin currents in topological insulators controlled

The illustration depicts the characteristic spin orientation (arrows) of electrons in a topological insulator (below). Using an initial circular polarised laser pulse, the spins are excited and point up or down. This can be proven by a second linearly polarised laser pulse (above).

The illustration depicts the characteristic spin orientation (arrows) of electrons in a topological insulator (below). Using an initial circular polarised laser pulse, the spins are excited and point up or down. This can be proven by a second linearly polarised laser pulse (above).

An international team headed by HZB researcher Jaime Sánchez-Barriga has shown how spin-polarised currents can be initiated in a controlled manner within samples of topological insulator material. In addition, they were able to manipulate the orientation of the spins of these currents. They thereby demonstrated that this class of materials is suitable for data processing based on spin. The work has been published in the renowned periodical Physical Review B and was selected as “Editor’s Suggestion” article.

Future information technologies should employ considerably less energy for processing data. One exciting class of materials for this comprises topological insulators. Topological insulators are distinguished by their electrons at the surface being extremely mobile, while the bulk material within is an insulator and does not conduct. Since electrons also simultaneously carry a magnetic moment (spin), topological insulators might also make “spintronic” components feasible. Spintronic components would not be based on the movement of charge carriers like electrons (as in semiconductor components), but instead on the transport or manipulation of their spins. This would require considerably less energy.

An international team headed by HZB physicist Jaime Sánchez-Barriga has now shown how the spins of the electrons in topological insulators can be controlled. The team investigated samples of antimony-telluride, a topological insulator, using circularly polarised laser light. They were able to initiate and direct currents of electrons whose spins were oriented in parallel (i. e., spin-polarised currents) using the “rotational direction” of the laser light. In addition, they were successful in changing the orientation of the spins as well. The team was made up of experimentalists from the Max Born Institute in Berlin and Lomonossow University Moscow, together with theoreticians from Ludwig-Maximilians-Universität München (LMU). The work has been published in the renowned journal Physical Review B and was selected as “Editor’s Suggestion” article.

“If you were to utilise magnetically doped topological insulators, you could also probably store this spin information”, explains Oliver Rader, who heads the research group for green spintronics at HZB. “To investigate this however, and also be able to explore the dynamic behaviour of the magnetic moments in particular, ultra-short light pulses in the soft X-ray region are needed. These kinds of experiments can become standard with the planned upgrade of the BESSY II synchrotron source to BESSY-VSR”, he hopes.

Ultrafast spin-polarization control of Dirac fermions in topological insulators, J. Sánchez-Barriga, E. Golias, A. Varykhalov, J. Braun, L. V. Yashina, R. Schumann, J. Minár, H. Ebert, O. Kornilov, and O. Rader
Phys. Rev. B 93, 155426
DOI: http://dx.doi.org/10.1103/PhysRevB.93.155426


Link to the Editor's Suggestion


arö


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).