Rowan MacQueen erforscht optische Energiewandler für die Brennstofferzeugung: Förderung durch das Helmholtz-Postdoktorandenprogramm

Rowan MacQueen

Rowan MacQueen

Dr. Rowan W. MacQueen wird im Mai 2016 an das Helmholtz-Zentrum Berlin (HZB) kommen und erhält eine Förderung durch das Helmholtz-Postdoktorandenprogramm. Er will die optoelektronischen Eigenschaften an den Grenzflächen von dünnen organischen Schichten zu Oxiden untersuchen. Sie sind relevant, um optische Energiewandler für die Brennstofferzeugung zu entwickeln. Das „Helmholtz-Postdoktorandenprogramm“ fördert den Australier jährlich mit 100.000 Euro für einen Zeitraum von bis zu drei Jahren. 

Dr. Rowan W. MacQueen wird im Mai 2016 an das Helmholtz-Zentrum Berlin (HZB) kommen und erhält eine Förderung durch das Helmholtz-Postdoktorandenprogramm. Er will die optoelektronischen Eigenschaften an den Grenzflächen von dünnen organischen Schichten zu Oxiden untersuchen. Sie sind relevant, um optische Energiewandler für die Brennstofferzeugung zu entwickeln. Das „Helmholtz-Postdoktorandenprogramm“ fördert den Australier jährlich mit 100.000 Euro für einen Zeitraum von bis zu drei Jahren. 

MacQueen forscht derzeit an der University of Sydney (USYD) sowie der University of New South Wales (UNSW). Er entschied sich für das HZB, weil ihm am „Energy Materials In-Situ Laboratory (EMIL)” an BESSY II optimale Untersuchungsmöglichkeiten für sein Vorhaben zur Verfügung stehen. Die für seine geplanten Untersuchungen notwendigen Bauelemente werden in den HZB-Instituten „Solar Fuels“, „Silizium-Photovoltaik“ und im Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) entwickelt. MacQueen hat das HZB Mitte 2015 im Rahmen eines über den DAAD geförderten Ausstauschprogramms kennengelernt.

Rowan Mac Queen promovierte im Oktober 2014 an der USYD und arbeitete anschließend als Postdoktorand in der Gruppe „Molekulare Photonik“. Dabei konzentriert er sich auf flüchtige elektronische Prozesse in organischen Materialien, die er mit verschiedenen Methoden spektroskopisch untersucht. „Meine Arbeit könnte eine Voraussetzung dafür schaffen, um neue hocheffizientere Bauelemente für die Energieumwandlung zu entwickeln: Würde man molekulare Lichtwandler in Solar Fuel Devices anwenden, könnte man ein breiteres Spektrum des Lichts effizienter für die Wasserstofferzeugung aus Licht nutzen. Heute geht die Energie des niederenergetischen Lichts normalerweise verloren, da die Photonen im Material nicht absorbiert werden können. Auf der anderen Seite sind organische Lichtwandler ein interessantes Testfeld, um die grundlegenden photochemischen Prozesse in organischen Materialien zu verstehen“, erklärt MacQueen.

In seiner noch jungen Forscherlaufbahn veröffentlichte der Australier 13 Publikationen und ist Mitinhaber von zwei Patenten. MacQueen wird am HZB-Institut für Nanospektroskopie forschen.

Klaus Lips, Professor an der FU Berlin und Mitarbeiter des Instituts, sagt: „Mit Rowan MacQueen gewinnen wir einen brillanten und hochmotivierten jungen Wissenschaftler, dessen Expertise eine ideale Ergänzung für unser ambitioniertes Forschungsprogramm in den Erneuerbaren Energien darstellt“.

Über das Helmholtz-Postdoktorandenprogramm
Mit dem Helmholtz-Postdoktorandenprogramm will die Helmholtz-Gemeinschaft talentierte junge Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler nach Fertigstellung einer vielversprechenden Promotion dabei unterstützen, ihre wissenschaftliche Exzellenz weiter auszubauen. Mithilfe einer zwei- bis dreijährigen Individualförderung können sie direkt nach Abschluss ihrer Promotion ein von ihnen definiertes Forschungsthema selbstständig weiter verfolgen und sich in diesem Forschungsgebiet etablieren. Die Helmholtz-Postdocs können darüber hinaus die Weiterbildungsangebote der Helmholtz-Akademie für Führungskräfte in Anspruch nehmen und somit ihre Managementkompetenz ausbauen. Weitere Informationen
 

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.