Dotierung von organischen Halbleitern analysiert

R&ouml;ntgenstreuung an reinem 4T, weihnachtlich eingef&auml;rbt. </p>
<p>

Röntgenstreuung an reinem 4T, weihnachtlich eingefärbt.

© HZB

Die R&ouml;ntgenstreuung zeigt links bei reinem 4T (oben) und P3HT (unten) die typischen Reflexe des Wirtsgitters. Bei den stark dotierten Materialien tauchen grundlegend andere Reflexe auf, die das Vorhandensein von Ko-Kristallite belegen.

Die Röntgenstreuung zeigt links bei reinem 4T (oben) und P3HT (unten) die typischen Reflexe des Wirtsgitters. Bei den stark dotierten Materialien tauchen grundlegend andere Reflexe auf, die das Vorhandensein von Ko-Kristallite belegen. © HZB

Organische Halbleitermaterialien werden heute schon erfolgreich eingesetzt, zum Beispiel für Solarzellen oder Leuchtdioden (OLEDs). Bislang war jedoch nur wenig darüber bekannt, wie „Dotier“-Moleküle strukturell in organische Halbleiter integriert werden. Dies hat nun die gemeinsame Forschergruppe „Molekulare Systeme“ des Helmholtz-Zentrums Berlin und der Humboldt-Universität zu Berlin an BESSY II analysiert. Die Ergebnisse sind überraschend: Die Moleküle verteilen sich nicht notwendigerweise gleichmäßig im Wirtsgitter, wie man es von anorganischen Halbleitern gewohnt ist, sondern bilden sogenannte Ko-Kristallite mit dem Wirtsmaterial.

Unsere moderne Halbleitertechnologie basiert auf Silizium, einem anorganischen Halbleitermaterial, das für den Einsatz in elektronischen Bauelementen mit Fremdatomen dotiert wird. Doch auch organische Festkörper aus konjugierten  Molekülen oder Polymeren besitzen halbleitende Eigenschaften, die Anwendungen in der organischen Elektronik ermöglichen. Das enorme Potenzial der organischen Elektronik hat sich in den letzten Jahren am Beispiel von Leuchtdioden (OLEDs) deutlich gezeigt.

Gastmoleküle im Wirtsgitter

So lassen sich zum Beispiel Oligothiophen (4T) und Polythiophen (P3HT), zwei typische organische Halbleiter, mit einer zweiten Molekülsorte, einem starken Elektronenakzeptor (F4TCNQ), „dotieren“ und dadurch gezielt hinsichtlich ihrer Leitfähigkeit beeinflussen. Wie sich allerdings diese Gastmoleküle in das Wirtsgitter der organischen Halbleiter strukturell integrieren, war bislang kaum bekannt. Daher wurde, in Analogie zu anorganischen Halbleitern, bisher stets eine homogene Verteilung vorausgesetzt.

Hinweise auf Besonderheiten

Ein internationales Team, geleitet von der gemeinsamen Forschergruppe „Molekulare Systeme“ am HZB und der Humboldt-Universität zu Berlin, konnte nun zeigen, dass dies weder für Oligothiophen noch Polythiophen der Fall ist. Die Gruppe um Dr. Ingo Salzmann und Prof. Dr. Norbert Koch hatte zuvor bereits an anderen Systemen experimentell und theoretisch analysiert, wie sich die Dotierung von organischen Halbleitern auf deren elektronische Struktur und damit deren Leitfähigkeit auswirkt. Daraus ergaben sich Hinweise auf Besonderheiten dieser Materialklasse, bei denen die Hybridisierung der Molekülorbitale eine Schlüsselrolle spielt.

Verschieden stark dotierte Proben

Deshalb stellten sie nun eine Serie von verschieden stark dotierten organischen Dünnschichten her und untersuchten diese Proben mit Röntgenbeugung an der KMC-2-Beamline, die Dr. Daniel Többens betreut. Dadurch konnten sie die kristalline Struktur in Abhängigkeit von der Stärke der Dotierung präzise bestimmen.

Ko-Kristallite als "Dotanden"

Ihre Ergebnisse zeigten, sowohl für 4T als auch für P3HT, dass sich die Gastmoleküle -  in krassem Gegensatz zur Erwartung -– keineswegs gleichmäßig in das Wirtsgitter des organischen Halbleiters einbauen. In der reinen kristallinen Wirtsmatrix bildet sich stattdessen eine zweite kristalline Phase aus Wirt/Gast Ko-Kristalliten.

Der „dotierte“ organische Halbleiter besteht damit aus einer Matrix von „Original“-Kristalliten, in die „Misch“-Kristallite eingebettet sind. Diese Misch-Kristallite übernehmen die eigentliche Rolle der „Dotier“-Moleküle.

Verständnis ermöglicht mehr Kontrolle

„Es ist wichtig, die grundlegenden Prozesse bei der Dotierung organischer Halbleiter genauer zu verstehen“, erklärt Salzmann: „Wenn wir solche Materialien erfolgreich in Anwendungen einsetzen möchten, müssen wir ihre elektronischen Eigenschaften genauso präzise kontrollieren können, wie es bei anorganischen Halbleitern heute selbstverständlich ist.“

Charge-transfer crystallites as molecular electrical dopants, Nature Communications  doi:10.1038/ncomms9560

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.