Graphen als Frontkontakt für Silizium-Perowskit-Tandem-Solarzellen

Die Tandem-Solarzelle besteht (von unten nach oben, wie der Lichteinfall) aus der Perowskit-Schicht (schwarz, 200-300 nm), Spiro.OMeTAD (beige, 200-300 nm), Graphen (am Rand mit Gold kontaktiert), einem Glasträger sowie der aSi-cSi-Schicht (lila).

Die Tandem-Solarzelle besteht (von unten nach oben, wie der Lichteinfall) aus der Perowskit-Schicht (schwarz, 200-300 nm), Spiro.OMeTAD (beige, 200-300 nm), Graphen (am Rand mit Gold kontaktiert), einem Glasträger sowie der aSi-cSi-Schicht (lila). © F. Lang / HZB

Ein Team aus dem Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin hat ein neues und raffiniertes Verfahren entwickelt, um die empfindliche Perowskit-Schicht erstmals mit Graphen zu beschichten. Mit anschließenden Messungen konnten sie belegen, dass Graphen ideal als Frontkontakt geeignet ist.

Nun hat eine Gruppe um Prof. Norbert Nickel eine neue Lösung vorgestellt: Dr. Marc Gluba und Doktorand Felix Lang haben ein Verfahren entwickelt, um die Perowskit-Schicht gleichmäßig mit Graphen zu bedecken; Graphen besteht aus Kohlenstoffatomen, die sich zu einem zweidimensionalen Netz aus „Bienenwaben“ anordnen und einen extrem dünnen Film bilden, der hoch leitfähig und vollkommen transparent ist.

Mehrstufiger Prozess:

Im ersten Schritt lassen die Wissenschaftler das Graphen aus einer Methanatmosphäre bei etwa 1000 Grad Celsius auf einer Kupferfolie aufwachsen. Für das weitere Vorgehen stabilisieren sie die empfindliche Schicht mit einem Lack, der das Graphen vor Zerreißen schützt. Denn im folgenden Schritt ätzt Felix Lang die Kupferfolie weg. So kann er im Anschluss die nun freistehende Graphen/Lack Schicht auf das Perovskit übertragen. „Dies wird normalerweise in Wasser gemacht, die Solarzelle fischt dann sozusagen die auf der Oberfläche schwimmende Graphenfolie auf. In diesem Fall ging das aber nicht, denn Perowskit ist höchst wasserempfindlich. Wir mußten daher eine andere Flüssigkeit finden, die das Perowskit nicht angreift und dennoch möglichst wasserähnlich ist“, erklärt Gluba.

Graphen ideal geeignet:

Dass die Graphenschicht in mehreren Hinsichten ein idealer Frontkontakt ist, zeigten die anschließenden Messungen: Wegen der nahezu vollständigen Transparenz geht kein Sonnenlicht für die Energieumwandlung verloren. Vor allem aber gibt es keine Einbußen bei der Leerlaufspannung, wie es beim Aufsputtern von ITO der Fall ist. „Diese Lösung ist in der Handhabung vergleichsweise einfach und günstig“, sagt Norbert Nickel. „Uns ist es damit gelungen, zum ersten Mal Graphen direkt auf eine Perowskit-Solarzelle zu übertragen und so eine hoch effiziente Tandemzelle mit einem transparenten Frontkontakt aus Graphen zu realisieren.“


Journal of Physical Chemistry Letters: Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells; Felix Lang, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and Norbert H. Nickel
J. Phys. Chem. Lett., 2015, 6 (14), pp 2745–2750
DOI: 10.1021/acs.jpclett.5b01177

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.