Ultradünne Wasserfilme zum Fließen gebracht - Ein Flachstrahl für Röntgenspektroskopie

Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem  blattförmigen Wasserfilm.

Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem blattförmigen Wasserfilm. © MBI

Teams des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), des HZB und des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) haben ein neuartiges Flachstrahlsystem für Transmissionsmessungen flüssiger Proben im weichen Röntgenbereich entwickelt. Dies bedeutet einen wichtigen Fortschritt für die Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung und ebnet den Weg für neuartige stationäre und zeitaufgelöste Experimente.

Dabei wurde ein Phänomen aus der Fluiddynamik ausgenutzt: Wenn sich zwei identische laminare Flüssigkeitsstrahlen unter einem wohldefinierten Winkel treffen, breitet sich die Flüssigkeit radial aus, was zur Ausbildung eines dünnen blattförmigen Flüssigkeitsfilm senkrecht zur Ebene der beiden Strahlen führt. Dieser Film wird durch eine ebenfalls aus der Flüssigkeit gebildeten Randlippe stabilisiert.

Die Innovation besteht hier darin, dass ein über Stunden stabiler Flachstrahl im Vakuum (bei Drücken kleiner als 10-3 mbar) mit einer Dicke von einem bis zwei Mikrometer realisiert wurde. Erstmalig konnten damit Absorptionsspektren flüssiger Proben in Transmission mit Photonenenergien im Weichröntgenbereich und völlig ohne Membran-basierte Fenster gemessen werden.

Die röntgenspektroskopischen Messungen wurden an BESSYII des HZB durchgeführt.


Lesen Sie hier den kompletten Text aus dem MBI.

Originalpublikation: Structural Dynamics 2, 054301 (2015): A liquid flatjet system for solution phase soft-x-ray spectroscopy
Maria Ekimova, Wilson Quevedo, Manfred Faubel, Philippe Wernet, Erik T.J. Nibbering

Max-Born-Institut/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.