Außergewöhnliche magnetische Struktur und Spindynamik im magnetoelektrischen Material LiFePO4 entdeckt

HZB-Forscher entschl&uuml;sselten an der Neutronenquelle BER II die magnetische Struktur des Materials LiFePO<sub>4</sub>.</p>
<p>

HZB-Forscher entschlüsselten an der Neutronenquelle BER II die magnetische Struktur des Materials LiFePO4.

© HZB

HZB-Forscher wiesen eine Verkippung der magnetischen Momente in LiFePO<sub>4</sub> nach. Abgebildet sind die magnetische Struktur (a), deren Projektion auf die bc-Ebene (b) und die Dispersion der magnetischen Anregungen (c). Die magnetischen Momente sind sowohl gegeneinander als auch bez&uuml;glich der kristallographischen Achsen verkippt.

HZB-Forscher wiesen eine Verkippung der magnetischen Momente in LiFePO4 nach. Abgebildet sind die magnetische Struktur (a), deren Projektion auf die bc-Ebene (b) und die Dispersion der magnetischen Anregungen (c). Die magnetischen Momente sind sowohl gegeneinander als auch bezüglich der kristallographischen Achsen verkippt.

Ein HZB-Team hat die komplexe magnetische Struktur und die darauf basierende Spindynamik in der magnetoelektrischen Substanz LiFePO4 entschlüsselt. Materialien dieser Klasse werden bereits heute in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung sowie der Spintronik.

Mit Experimenten, die an der Neutronenquelle BER II des HZB durchgeführt wurden, identifizierten die Forscher in LiFePO4 einen neuen Zweig im magnetischen Anregungsspektrum und wiesen eine nicht-kollineare magnetische Struktur nach. Sie zeigten, dass die magnetoelektrischen Eigenschaften aufgrund der sogenannten Dzyaloshinsky-Moriya-Wechselwirkung zustande kommen,  die durch die Spin-Bahn-Kopplung magnetischer Momente verursacht wird. Die Ergebnisse sind in der Zeitschrift Physical Review B erschienen (http://dx.doi.org/10.1103/PhysRevB.92.024404).

LiFePO4 ist ein Modellsystem für die Klasse magnetoelektrischer Materialien. Diese Materialien werden heute bereits in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung und der Spintronik. In magnetoelektrischen Materialien sind Magnetisierung und elektrische Polarisation so miteinander gekoppelt, dass externe magnetische Felder eine elektrische Polarisation induzieren und umgekehrt äußere elektrische Felder zu einer endlichen Magnetisierung führen. Die Kopplung zwischen Magnetisierung und elektrischer Polarisation tritt dann auf, wenn sich kleinste Veränderungen in der Gitterstruktur, an die die elektronische Struktur gekoppelt ist, aufgrund der magnetischen Wechselwirkung auch in der magnetischen Struktur widerspiegeln.

Verkippte magnetische Struktur

Dem HZB-Team um Dr. Rasmus Toft-Petersen ist es nun gelungen, eine winzige Verkippung der magnetischen Momente nachzuweisen, die zur Magnetoelektrizität in dieser Verbindung führt. Die magnetischen Anregungen in der antiferromagnetischen Phase von LiFePO4 wurden am Dreiachsenspektrometer für kalte Neutronen V2/FLEXX an der Neutronenquelle BER II vermessen.  Durch den Nachweis von zwei Zweigen im Anregungsspektrum gelang es, die komplexen magnetischen Wechselwirkungsparameter genau zu bestimmen und die in diesem System vorhandene starke magnetische Anisotropie zu identifizieren. Das Auftreten von ausgeprägter magnetischer Anisotropie ist typischerweise eine Folge starker Spin-Bahn-Kopplung und trägt erheblich zur Bildung des Grundzustands bei.

Dass die Spin-Bahn-Kopplung eine wesentliche Rolle spielt, konnte durch weitere Experimente am Diffraktometer E5 nachgewiesen werden. In den Messungen gaben schwache magnetische Bragg-Peaks den Hinweis auf eine magnetische Struktur, in der die magnetischen Momente nicht völlig parallel zueinander orientiert sind, sondern geringfügig gegeneinander verkippt sind. Solche Verkippungen können durch die von der Spin-Bahn-Kopplung verursachte Dzyaloshinsky-Moriya-Wechselwirkung entstehen, da sie eine senkrechte Orientierung der Spins gegenüber einer parallelen Ausrichtung bevorzugt.   
 
Modellierung der magnetoelektrischen Eigenschaften

Die Dzyaloshinsky-Moriya-Wechselwirkung ist sehr empfindlich auf die Symmetrie der Kristallstruktur. Legt man an eine Anordnung magnetischer Momente mit verkippter Struktur ein äußeres magnetisches Feld an, ändern sich die Kippwinkel und die mit der Dzyaloshinsky-Moriya-Wechselwirkung verbundene Energie. Das HZB-Team konnte nun zeigen, dass LiFePO4 auf extern angelegte magnetische Felder mit der Verschiebung der Sauerstoffatome reagiert. Dies führt zur Dzyaloshinsky-Moriya-Wechselwirkung, deren Auftreten ohne Magnetfeld aus Symmetriegründen eigentlich verboten ist. Auf Grundlage dieses Modells wurde die Temperaturabhängigkeit der magnetoelektrischen Koeffizienten berechnet, die die lineare Proportionalität zwischen magnetischem Feld und der elektrischen Polarisation beschreiben. „Die berechneten Koeffizienten sind in guter Übereinstimmung mit experimentellen Daten, die wir in der Literatur aus  früheren Messungen gefunden haben, und bestätigen damit das Modell“, sagt HZB-Forscher Dr. Rasmus Toft-Petersen.
 
Zur Publikation: Phys. Rev. B 92, 024404. “Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4” R. Toft-Petersen, M. Reehuis, T. B. S. Jensen, N. H. Andersen, J. Li, M. Duc Le, M. Laver, C. Niedermayer, B. Klemke, K. Lefmann, and D. Vaknin

http://dx.doi.org/10.1103/PhysRevB.92.024404

RTP/KH/SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Was die Zinkkonzentration in Zähnen verrät
    Science Highlight
    19.02.2026
    Was die Zinkkonzentration in Zähnen verrät
    Zähne sind Verbundstrukturen aus Mineralien und Proteinen, dabei besteht der Großteil des Zahns aus Dentin, einem knochenartigen, hochporösen Material. Diese Struktur macht Zähne sowohl stark als auch empfindlich. Neben Kalzium und Phosphat enthalten Zähne auch Spurenelemente wie Zink. Mit komplementären mikroskopischen Verfahren hat ein Team der Charité Berlin, der TU Berlin und des HZB die Verteilung von natürlichem Zink im Zahn ermittelt. Das Ergebnis: mit zunehmender Porosität des Dentins in Richtung Pulpa steigt die Zinkkonzentration um das 5- bis 10-fache. Diese Erkenntnis hilft, den Einfluss von zinkhaltigen Füllungen auf die Zahngesundheit besser zu verstehen und könnte Verbesserungen in der Zahnmedizin anstoßen.
  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.