BESSY II bietet neues Füllmuster

Das neue Füllmuster besteht aus einem Hybridbunch mit 4 mA (Chopper) in der Mitte der 200 ns Lücke, einem Bunch 84 ns später bei 3 mA mit variabler transversaler resonanter Anregung (PPRE), einer Multibunchfüllung sowie drei Slicing-Bunchen, die der Multibunchfüllung aufgeprägt sind. Damit werden insgesamt 302 von 400 möglichen Bunchen im Elektronenspeicherring gefüllt.

Das neue Füllmuster besteht aus einem Hybridbunch mit 4 mA (Chopper) in der Mitte der 200 ns Lücke, einem Bunch 84 ns später bei 3 mA mit variabler transversaler resonanter Anregung (PPRE), einer Multibunchfüllung sowie drei Slicing-Bunchen, die der Multibunchfüllung aufgeprägt sind. Damit werden insgesamt 302 von 400 möglichen Bunchen im Elektronenspeicherring gefüllt. © HZB

Seit Juli 2015 stellt BESSY II ein neues Standardfüllmuster bereit. Es eröffnet den Nutzerteams neue Möglichkeiten für zeitaufgelöste Experimente, ohne Einschränkung des bisher bewährten Angebots. Mittelfristig bereitet das neue Füllmuster das Zukunftsprojekt BESSY-VSR vor, mit dem variable Pulslängen hoher Intensität erreicht werden sollen.

Unterstützt werden neben ultraschnellen Experimenten beim Femtoslicing (Slicing-bunche) und Röntgen-Pump-Probe Anwendungen mit dem Hybridbunch nun zusätzlich auch Flugzeitspektroskopie mit dem ArToF bei Einzelbunchselektion mit dem MHz-Chopper [1]. Der neue zusätzliche Bunch (PPRE) in der Lücke, der auf Anfrage resonant angeregt wird, erlaubt nun auch zeitaufgelöste Photoelektronen- und Röntgenspektroskopie unter Verwendung der PPRE-Technik [2].

Mit dem Dauerbetrieb dieser zeitaufgelösten Methoden bietet das HZB bei BESSY II bereits jetzt neue Ansätze für den künftigen Speicherringbetrieb bei BESSY-VSR.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.