Spins in Graphen: ausgerichtet wie die Stachelns eines Igels

Die Illustration zeigt, wie sich an den Energieflächen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettstößer/HZB

Die Illustration zeigt, wie sich an den Energieflächen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettstößer/HZB

HZB-Team weist fundamentale Eigenschaft des Elektronenspins in Graphen nach

Seit geraumer Zeit experimentieren HZB-Forscher mit Graphen, einem Material, das für seine besonders leicht beweglichen Elektronen berühmt ist. Sie wollen diesem Material eine weitere Eigenschaft aufprägen. Dabei handelt es sich um eine Kopplung zwischen der Bewegungsrichtung dieser Elektronen und ihrem Eigendrehimpuls, dem Spin. Die Spineigenschaft ist eine Spezialität schwerer Elemente, wie beispielsweise Gold. Graphen besteht aus Kohlenstoff und ist dafür zu leicht. Jedoch beherrscht man am HZB die Methode, Gold kontrolliert unter eine Graphen-Lage zu schieben. So können in der Tat bestimmte Spinmuster erzeugt werden, die als Rashba-Effekt bekannt wurden, bislang gelang das allerdings nur in der Ebene des Graphen.Nun ist es Dr. Andrei Varykhalov und Mitarbeitern gelungen, den Spin auch aus der Ebene herauszudrehen.

Dabei drehen sich die Spins kontinuierlich von der Ebene in die Senkrechte, eine Ausrichtung wie bei den Stacheln eines Igels. Das konnten die Forscher mit spinaufgelöster Photoemissionsspektroskopie an BESSY II nachweisen.

Igel und Anti-Igel

Tatsächlich sind solche Igel-Strukturen beispielsweise aus der Kernphysik bekannt. Es sind ganz singuläre Punkte, die eigentlich dem Verbot magnetischer Monopole nach Gauss widersprechen würden. Hier wirft Varykhalov jedoch ein, dass im Graphen alles zweifach vorhanden ist, da seine Bienenwabenstruktur aus zwei äquivalenten Atomgittern zusammengesetzt ist. Tatsächlich gibt es zu dem Igel auch eine Art Anti-Igel, die zusammen dem Monopol-Verbot Genüge tun.

Design eines Spinfilters

Dass sich die Igel aufheben, bedeutet jedoch nicht, dass sie keine physikalische Auswirkungen hätten, ganz im Gegenteil, erklärt Prof. Dr. Oliver Rader, der Leiter der Abteilung. Die Physiker haben nämlich in ihrer Arbeit ein spintronisches Bauteil vorgeschlagen, das die Igelstruktur ausnutzt, um einen sehr effizienten Spinfilter zu realisieren. Im Spinfilter werden die Spins nach rechts bzw. links abgelenkt, der resultierende Spinstrom ist prinzipiell verlustlos und könnte in der Zukunft den Energieverbrauch in der Informationstechnologie reduzieren.

Sichtbar erst durch ein Substratkristall

Der Effekt im Graphen ist vor einigen Jahren von einer Gruppe aus Budapest vorhergesagt worden. Andros Kormányos erklärt, dass der Igel und der Anti-Igel auch bei den Vorläufersystemen schon angelegt waren, jedoch einander untrennbar überlagert. Erst durch Brechung der Untergittersymmetrie, die Varykhalov durch Wahl eines Substratkristalls mit einer niedrigeren Symmetrie bewerkstelligt hat, konnte er den Igel und den Anti-Igel voneinander trennen.

Die Arbeit ist in der renommierten Zeitschrift Nature Communications am 27. Juli 2015 veröffentlicht. Die zugrundeliegende Vorhersage [1] war im Jahre 2011 bei Physical Review B erschienen.

Zur Publikation: A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal & O. Rader,
Tunable Fermi level and hedgehog spin texture in gapped graphene
NATURE COMMUNICATIONS | 6:7610 | DOI: 10.1038/ncomms8610 

[1] A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal & O. Rader,
Tunable Fermi level and hedgehog spin texture in gapped graphene
NATURE COMMUNICATIONS | 6:7610 | DOI: 10.1038/ncomms8610

[2] Rakyta, P., Kormányos, A. & Cserti, J. Effect of sublattice asymmetry and
spin-orbit interaction on out-of-plane spin polarization of photoelectrons.
Phys. Rev. B 83, 155439 (2011).

Oliver Rader


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.