Grüne Lösungen mit Diamant-Materialien

Nano-Diamant-Materialien könnten helfen, Kohlendioxid zu wertvollen Brennstoffen weiterzuverarbeiten. Sonnenlicht soll sie als Katalysatoren aktivieren.

Nano-Diamant-Materialien könnten helfen, Kohlendioxid zu wertvollen Brennstoffen weiterzuverarbeiten. Sonnenlicht soll sie als Katalysatoren aktivieren. © T.Petit/H.Cords/HZB

Mit 3,9 Millionen Euro fördert das Europäische Forschungsprogramm Horizont 2020 ein internationales Projekt, das die Eignung von (Nano-)Diamant-Materialien als Katalysatoren untersucht: mit Hilfe von Sonnenlicht könnten solche Materialien Kohlendioxid in Brennstoffe umwandeln und damit Solarenergie chemisch speichern.

Synthetische Diamant-Materialien besitzen besondere Eigenschaften: Unter Lichtbestrahlung können sie chemische Reaktionen beschleunigen, also als Katalysatoren agieren. Eine Forschungskooperation aus Frankreich, England, Schweden und Deutschland, darunter auch Prof. Dr. Emad Aziz aus dem Helmholtz-Zentrum Berlin, will nun synthetische Diamant-Materialien so modifizieren, dass sie mit Hilfe von sichtbarem Licht zu effizienten Katalysatoren werden und Kohlendioxid in Kohlenwasserstoffe oder Brennstoffe umwandeln.

Erfolgreich in der Sektion Future Emerging Technologies

Das Forschungsvorhaben wird unter dem Akronym DIACAT geführt, für „Diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light“. Der Antrag setzte sich im strengen Auswahlverfahren in der Sektion “Future Emerging Technologies” durch und wird mit insgesamt 3,9 Millionen Euro gefördert, davon fließen 526,000 Euro an das HZB. Das Projekt wird durch Prof. Dr. Anke Krüger, Julius-Maximilians-Universität Würzburg, koordiniert und bindet Teams aus CEA (Frankreich), University of Oxford (UK), Uppsala University (Schweden), Fraunhofer-Institut für Angewandte Festkörperphysik, Ionic Liquid Technologies GmbH, und vom HZB ein. 

Experimentelle Möglichkeiten an BESSY II

Emad Aziz hat 2011 einen Starting Grant des European Research Council erhalten und leitet ein großes Team am HZB. An der Synchrotronquelle BESSY II des HZB hat er ein einzigartiges Instrument entwickelt, um Flüssigkeiten und Materialien in Lösung zu untersuchen. Gleichzeitig leitet Aziz auch das Joint Lab an der Freien Universität Berlin, wo ihm Hochleitungslaser mit ultrakurzen Pulsen zur Verfügung stehen. „Wir haben direkten Zugriff auf eine Vielzahl experimenteller Möglichkeiten, um die physikalischen und chemischen Eigenschaften von Diamant-Materialien zu untersuchen“, sagt er. Postdoktorand Dr. Tristan Petit aus seinem Team bringt Expertise mit Nanodiamanten ein: “Ich habe in den letzten Jahren sehr viel mit Nanodiamanten in Lösung gearbeitet. Nun wollen wir diese Arbeiten auf Grenzflächen und nanostrukturierte Diamant-Oberflächen ausdehnen, um zu sehen, wie wir diese Materialien modifizieren können, damit sie unter Lichtbestrahlung CO2 in die gewünschten Kohlenwasserstoffverbindungen umwandeln”, erklärt er.

Solarenergie chemisch speichern

Das Forschungsprojekt soll nicht nur das experimentelle und theoretische Verständnis von Diamant-Materialien als Katalysatoren erweitern, sondern auch praktisch demonstrieren, dass sie mit Licht Kohlendioxid in Brennstoffe umwandeln. Das Projekt könnte damit eine neue, grüne Technologie anstoßen, mit der sich die Energie des Sonnenlichts chemisch speichern ließe.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.