“Teufelstreppe” in einem Spin-Ventil-System

Der Durchmesser der hexagonalen Einkristalle aus SrCo<sub>6</sub>O<sub>11</sub> misst h&ouml;chstens 0,2 Millimeter.

Der Durchmesser der hexagonalen Einkristalle aus SrCo6O11 misst höchstens 0,2 Millimeter.

Die Probe zeigt Plateaus in der Magnetisierung die mit unterschiedlichen Spin-Anordnungen verbunden sind.

Die Probe zeigt Plateaus in der Magnetisierung die mit unterschiedlichen Spin-Anordnungen verbunden sind.

Ein Japanisch-Deutsches Team entdeckt in einem komplexen Kobaltoxid-Einkristall an BESSY II, wie sich die Spins stufenweise zu einer ungewöhnlichen Anordnung formieren. Dies könnte neue spintronische Bauelemente ermöglichen.

Materialien mit komplexen magnetischen Strukturen gelten als interessante Kandidaten für Anwendungen in der “Spintronik”, deren Ziel es ist, mit weitaus weniger Energieeinsatz Daten zu verarbeiten oder zu speichern. Ein bekanntes Beispiel ist das so genannte “Spin-Ventil“, bei dem die Stromstärke, die durch das Element durchgelassen wird, empfindlich von der Anordnung der magnetischen Spins abhängt. In künstlichen Schichtsystemen können diese Anordnungen durch äußere magnetische Felder kontrolliert werden, was zu dem Riesenmagnetowiderstand-Effekt (Giant Magnetoresistance oder GMR) führt, für den Albert Fert und Peter Grünberg 2007 den Nobelpreis für Physik erhielten.

Kobaltoxide: magnetisch höchst komplex

Während klassische GMR-Systeme aus metallischen Schichten bestehen, die künstlich übereinander gewachsen werden, bieten oxidische Materialien eine interessante Alternative: Denn hier können  sich Schichtstrukturen mit alternierenden magnetischen Konfigurationen intrinsisch einstellen,. So weisen Kobaltoxide komplexe magnetische Ordnungen auf, die sich mit steigendem Feld verändern und sich zum Beispiel als Plateaus in der Magnetisierungskurve zeigen.

Magnetische Strukturen kartiert

Ein japanisches Team um Professor Hiroki Wadati, Universität Tokio, hat nun die magnetischen Strukturen in SrCo6O11 am Hochfeld-Diffraktometer von BESSY II charakterisiert. Wie häufig bei der Synthese neuer Materialien, mussten sie mit winzigen Einkristallen arbeiten, die Durchmesser von gerade mal 0,2 Millimetern besaßen. Durch die extrem empfindliche Methode der resonanten Röntgenstreuung, eine Spezialität der Instrumentierung an der UE46_PGM1 Beamline von BESSY II, gelang es ihnen jedoch an diesen Proben, die mit bloßem Auge kaum sichtbar sind, eine hochinteressante Beobachtung zu machen. Sie entdeckten eine “Teufelstreppe” in der Spin-Anordnung. Dieses Phänomen tritt auf, wenn sich durch einen äußeren Parameter, hier ein magnetisches Feld, unzählig viele kommensurable Überstrukturen einstellen lassen.

Teufelstreppe eröffnet neue Optionen

Dies geht weit über ein einfaches Spinventil hinaus und könnte neue Anwendungen in der Spintronik ermöglichen. An der Forschungsarbeit, die nun in Physical Review Letters publiziert ist, war auch ein Team vom Institut für Festkörper- und Werkstoffforschung in Dresden und vom HZB beteiligt.

Publikation:  T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati, "Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11", Physical Review Letters 114 (236403-1-5):
doi:10.1103/PhysRevLett.114.236403.


Eugen Weschke


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.