BESSY II stellt auf Halbleiter-Hochfrequenzsender um

Der neue Halbleitersender:  die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht.

Der neue Halbleitersender: die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht. © HZB

BESSY II besitzt vier Kavitäten, die mit einem elektromagnetischen Wechselfeld hoher Leistung angeregt werden, um die Energieverluste des Elektronenstrahls auszugleichen. Bislang sorgten so genannte Klystron-Röhrensender für die Anregung der Kavitäten mit möglichst sauberen 500 Megahertz. Doch inzwischen gibt es kaum noch Ersatzteile für solche Röhrensender.  Ein HZB-Team hat daher den Shutdown genutzt, um zwei Klystron-Röhrensender durch moderne Halbleiter-Sender auszutauschen. Die restlichen  Klystron-Röhrensender sollen bis Ende des Jahres ausgetauscht werden.

„Diese Technik ist zuerst am Synchrotron SOLEIL, Frankreich, entwickelt und eingesetzt worden. SOLEIL arbeitet jedoch mit Anregungsfrequenzen von 350 Megahertz. Wir dagegen arbeiten wie die meisten Synchrotronlichtquellen mit Frequenzen von 500 Megahertz. Dafür mussten wir das Konzept neu entwickeln. Die Entwicklung und Fertigung der Senderendstufen wurden von einer deutschen Firma  (Cryoelectra) übernommen. Wir sind jetzt die erste Photonenquelle, die mit dieser Technik bei 500 Megahertz eine Anregungsleistung von 75 Kilowatt pro Sender erreicht“, erklärt Dr. Wolfgang Anders vom Institut SRF - Wissenschaft und Technologie.

Während die Klystron-Röhrensender Versorgungspannungen von 26 Kilovolt erforderten, arbeiten die Halbleitersender bei nur 50 Volt, benötigen aber höhere Stromstärken. Ein großer Vorteil ist die Energieeinsparung: Denn die Klystron-Röhrensender ziehen stets volle Leistung aus dem Netz, die Halbleiter-Sender regeln dies dagegen bedarfsgerecht und entnehmen dem Stromanschluss nur so viel Leistung wie der Elektronenstrahl abfordert, um Energieverluste auszugleichen. Außerdem haben die neuen Sender ein deutlich reduziertes Rauschen: die Kavität wird viel sauberer angeregt, was wiederum die Strahlqualität verbessert.

„Mein Team arbeitet seit drei Jahren daran, die neue Technik an BESSY II zu implementieren. Allein ein Jahr hat die umfangreiche Programmierung der Kontrollsystemanbindung und Signalverarbeitung der Solid-State Amplifier durch einen neu eingestellten Ingenieur gedauert. Nun besitzen wir eine sehr robuste Lösung, die vermutlich auch für andere Synchrotronlichtquellen interessant ist“, sagt Wolfgang Anders.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.