Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin

3D-Modelle der Beschleunigerhalle für bERLinPro

3D-Modelle der Beschleunigerhalle für bERLinPro

Am HZB- Standort Adlershof entsteht ein neuer Linearbeschleuniger mit Energierückgewinnung

Im Rahmen von bERLinPro entwickeln Forscherinnen und Forscher des HZB eine neuartige Beschleunigertechnologie. Mit diesem Prototypen werden alle Schlüsselelemente für einen Hochstrombetrieb solcher Anlagen entwickelt und getestet. Er soll die Machbarkeit dieser Technologie demonstrieren.

Herausfordernd ist dabei nicht nur die neue Beschleunigertechnologie. Auch die Bauarbeiten müssen spezielle Anforderungen berücksichtigen. Zum einen die Anforderungen des Strahlenschutzes, die durch den späteren Betrieb der Anlage bestehen und ein unterirdisches Gebäude erfordern. Zum anderen ist der Grundwasserspiegel unter dem Gelände sehr hoch. Aus diesem Grund wird die Baugrube des Gebäudes in einer so genannten Trogbauweise errichtet. Das bedeutet, dass die eigentliche Beschleunigerhalle von einer Betonwanne umgeben ist. Unterstützt von Pumpen, hält diese während der Bauphase das Wasser vom Gebäude fern. Die Trogbauweise gilt bei schwierigem Baugrund als besonders sicheres und umweltverträgliches Verfahren, weil dadurch Auswirkungen auf den Boden und auf Nachbargebäude vermieden werden.

In der ersten Bauphase werden die seitlichen Schlitzwände und eine Bodenplatte in Form von überlappenden Betonlinsen in 12 Metern Tiefe errichtet. Erst danach beginnen die Arbeiter mit dem Bau der Beschleunigerhalle. Aus Gründen des Strahlenschutzes wird diese dann auch mit einem zirka drei Meter hohen Erdwall bedeckt. Zusätzlich wird für die Versorgung der Beschleunigeranlage eine Technikhalle benötigt. Sie wird zehn Meter hoch sein und ist direkt mit der Beschleunigerhalle verbunden. Die Baukosten belaufen sich auf ca. 12,7 Millionen Euro.

Die Entwicklung von Linac-basierten Lichtquellen bietet die einzigartige Chance, das komplette und komplementäre Spektrum an Synchrotronstrahlungsquellen in der Helmholtz-Gemeinschaft anzubieten. Dazu gehören Freie-Elektronen Laser, Speicherringe und nun auch Linearbeschleuniger mit Energierückgewinnung  (englisch: Energy Recovery Linacs - ERL). Der ERL vereinigt als einziger Beschleunigertyp die Vorteile von Speicherringen und Linearbeschleunigern: Er erlaubt zum einen statische Strukturuntersuchungen mit hoher Auflösung. Es sind aber zeitaufgelöste Messungen möglich, mit denen man die Dynamik einer Struktur bei moderater Pulsintensität untersuchen kann, die die Proben nicht zerstört. Da zwischen beiden Betriebsmodi schnell gewechselt werden kann, lassen sich solch komplementäre Untersuchungen an der gleichen Probe innerhalb kurzer Zeit durchführen. Das ist ein ausschlaggebender Vorteil für viele Experimente. Zudem können bei ERL basierten Lichtquellen viele Beamlines gleichzeitig betrieben werden, so wie man es von Speicherringquellen kennt.

Die Funktionsweise des ERL

Im Energy Recovery Linac Prototype bERLinPro werden Elektronenpakete in einem Injektor erzeugt und in einem langen, geraden und supraleitenden Linearbeschleuniger (Linac) auf nahezu Lichtgeschwindigkeit beschleunigt. Die Elektronen werden dann durch Magnete, so genannte Undulatoren, geführt und erzeugen dort Röntgenstrahlung wie in einer Synchrotronstrahlungsquelle. Sie haben jedoch eine höhere Brillanz, da die Elektronenpakete im Linac kompakter bleiben als in einem Kreisbeschleuniger. Die Elektronenpakete werden kontinuierlich injiziert und kommen nach ihrem Umlauf wieder in den Linac zurück, wo sie abgebremst werden. Dadurch gewinnt man nahezu die gesamte Energie zurück.

Den Baufortschritt von bERLinPro können Sie hier über unsere Webcam im Zeitraffermodus verfolgen.

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.