Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin

3D-Modelle der Beschleunigerhalle für bERLinPro

3D-Modelle der Beschleunigerhalle für bERLinPro

Am HZB- Standort Adlershof entsteht ein neuer Linearbeschleuniger mit Energierückgewinnung

Im Rahmen von bERLinPro entwickeln Forscherinnen und Forscher des HZB eine neuartige Beschleunigertechnologie. Mit diesem Prototypen werden alle Schlüsselelemente für einen Hochstrombetrieb solcher Anlagen entwickelt und getestet. Er soll die Machbarkeit dieser Technologie demonstrieren.

Herausfordernd ist dabei nicht nur die neue Beschleunigertechnologie. Auch die Bauarbeiten müssen spezielle Anforderungen berücksichtigen. Zum einen die Anforderungen des Strahlenschutzes, die durch den späteren Betrieb der Anlage bestehen und ein unterirdisches Gebäude erfordern. Zum anderen ist der Grundwasserspiegel unter dem Gelände sehr hoch. Aus diesem Grund wird die Baugrube des Gebäudes in einer so genannten Trogbauweise errichtet. Das bedeutet, dass die eigentliche Beschleunigerhalle von einer Betonwanne umgeben ist. Unterstützt von Pumpen, hält diese während der Bauphase das Wasser vom Gebäude fern. Die Trogbauweise gilt bei schwierigem Baugrund als besonders sicheres und umweltverträgliches Verfahren, weil dadurch Auswirkungen auf den Boden und auf Nachbargebäude vermieden werden.

In der ersten Bauphase werden die seitlichen Schlitzwände und eine Bodenplatte in Form von überlappenden Betonlinsen in 12 Metern Tiefe errichtet. Erst danach beginnen die Arbeiter mit dem Bau der Beschleunigerhalle. Aus Gründen des Strahlenschutzes wird diese dann auch mit einem zirka drei Meter hohen Erdwall bedeckt. Zusätzlich wird für die Versorgung der Beschleunigeranlage eine Technikhalle benötigt. Sie wird zehn Meter hoch sein und ist direkt mit der Beschleunigerhalle verbunden. Die Baukosten belaufen sich auf ca. 12,7 Millionen Euro.

Die Entwicklung von Linac-basierten Lichtquellen bietet die einzigartige Chance, das komplette und komplementäre Spektrum an Synchrotronstrahlungsquellen in der Helmholtz-Gemeinschaft anzubieten. Dazu gehören Freie-Elektronen Laser, Speicherringe und nun auch Linearbeschleuniger mit Energierückgewinnung  (englisch: Energy Recovery Linacs - ERL). Der ERL vereinigt als einziger Beschleunigertyp die Vorteile von Speicherringen und Linearbeschleunigern: Er erlaubt zum einen statische Strukturuntersuchungen mit hoher Auflösung. Es sind aber zeitaufgelöste Messungen möglich, mit denen man die Dynamik einer Struktur bei moderater Pulsintensität untersuchen kann, die die Proben nicht zerstört. Da zwischen beiden Betriebsmodi schnell gewechselt werden kann, lassen sich solch komplementäre Untersuchungen an der gleichen Probe innerhalb kurzer Zeit durchführen. Das ist ein ausschlaggebender Vorteil für viele Experimente. Zudem können bei ERL basierten Lichtquellen viele Beamlines gleichzeitig betrieben werden, so wie man es von Speicherringquellen kennt.

Die Funktionsweise des ERL

Im Energy Recovery Linac Prototype bERLinPro werden Elektronenpakete in einem Injektor erzeugt und in einem langen, geraden und supraleitenden Linearbeschleuniger (Linac) auf nahezu Lichtgeschwindigkeit beschleunigt. Die Elektronen werden dann durch Magnete, so genannte Undulatoren, geführt und erzeugen dort Röntgenstrahlung wie in einer Synchrotronstrahlungsquelle. Sie haben jedoch eine höhere Brillanz, da die Elektronenpakete im Linac kompakter bleiben als in einem Kreisbeschleuniger. Die Elektronenpakete werden kontinuierlich injiziert und kommen nach ihrem Umlauf wieder in den Linac zurück, wo sie abgebremst werden. Dadurch gewinnt man nahezu die gesamte Energie zurück.

Den Baufortschritt von bERLinPro können Sie hier über unsere Webcam im Zeitraffermodus verfolgen.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.