Universität Bielefeld und HZB kooperieren zu Nanoschichten und komplexen Materialien

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Im Februar 2015 haben Uni-Rektor Professor Dr.-Ing. Gerhard Sagerer, Uni-Kanzler Dr. Stephan Becker und die Geschäftsführer des HZB, Professorin Dr.-Ing. Anke Kaysser-Pyzalla und Thomas Frederking eine Vereinbarung über die Zusammenarbeit unterschrieben. Darin heißt es: „Die Kooperation soll zur Steigerung der wissenschaftlichen Exzellenz der Partner und zur Entwicklung regionaler Kompetenznetzwerke in Forschung, Lehre und Ausbildung des wissenschaftlichen Nachwuchses beitragen.“

Die HZB-Spitze besuchte im Februar die Universität Bielefeld, speziell die Laborräume für Helium-Ionen-Mikroskopie, für die Herstellung ultradünner Schichtsysteme sowie für Kleinwinkelröntgenstreuung und Polymer-Charakterisierung. Außerdem wurde der neue Ersatzneubau für die Experimentalphysik besichtigt. In Gesprächen mit dem Physiker Professor Dr. Günter Reiss, Arbeitsgruppe Dünne Schichten & Physik der Nanostrukturen, und dem Chemiker Professor Dr. Thomas Hellweg, Arbeitsgruppe Physikalische und Biophysikalische Chemie, wurden konkrete Inhalte der weiteren Zusammenarbeit ausgelotet: Geräte und Einrichtungen sollen gemeinsam genutzt werden, Wissenschaftliche Beschäftige des HZB sollen an der Universität lehren können und Professuren sollen gemeinsam berufen werden. Dafür legt die Vereinbarung den Grundstein. 

Zusammenarbeit seit 2013

Die beiden Institutionen arbeiten bereits seit 2013 zusammen: Im DFG- geförderten Schwerpunktprogramm „Topologische Isolatoren“ erforschen Physikerinnen und Physiker der Universität Bielefeld und des HZB Materialien mit neuen Quanteneigenschaften für künftige Elektronik-Bauelemente. Die Bielefelder Chemie kooperiert darüber hinaus in einem vom BMBF geförderten Verbundforschungsvorhaben mit dem HZB: Gemeinsam sollen neue experimentelle Möglichkeiten zur Untersuchung von Nanomaterialien entwickelt werden.

Schwerpunkte an der Uni Bielefeld

Die Universität Bielefeld hat sich in ihrem Profilschwerpunkt Molekular- und Nanowissenschaften an den Schnittstellen zwischen Physik, Chemie, Biologie und Bioinformatik national und international sichtbar positioniert. Die aktuellen Forschungsschwerpunkte reichen von der Physik und Chemie molekularer Einzelprozesse in organischen Systemen über Nanoschichten und Nanopartikel bis hin zur Erforschung bakterieller, pflanzlicher und tierischer Zellen.


Uni Bielefeld/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.