„Löcher“ im Valenzband von Nanodiamanten entdeckt

Nanodiamanten messen nur wenige Nanometer im Durchmesser und bestehen aus einigen tausend Kohlenstoffatomen. Mohamed Sennour, MINES ParisTech.

Nanodiamanten messen nur wenige Nanometer im Durchmesser und bestehen aus einigen tausend Kohlenstoffatomen. Mohamed Sennour, MINES ParisTech.

Ende 2014 erhielt Dr. Tristan Petit (ganz rechts) für seine Doktorarbeit einen C’Nano-Preis in der Kategorie „Interdisziplinäre Forschung“.

Ende 2014 erhielt Dr. Tristan Petit (ganz rechts) für seine Doktorarbeit einen C’Nano-Preis in der Kategorie „Interdisziplinäre Forschung“. © C'Nano

Eigenschaften könnten sich gezielt verändern lassen, um Nanodiamanten als Katalysatoren für die Wasserstofferzeugung mit Sonnenlicht zu nutzen, hoffen die Forscher.

Nanodiamanten sind winzige Kristalle, die zwar die kristalline Struktur von Diamanten besitzen, aber aufgrund ihrer enormen Oberflächen andere Eigenschaften als ihre großen Brüder aufweisen. Nanodiamanten können zum Beispiel als Wirkstofftaxis für biomedizinische Anwendungen oder als Katalysatoren für die Wasserspaltung genutzt werden. Doch wie unterscheiden sich die elektronischen Eigenschaften von Nanodiamanten auf einem festen Substrat von den Eigenschaften, die Nanodiamanten in wässrigen Lösungen aufweisen?  Dr. Tristan Petit im Team um Prof. Dr. Emad F. Aziz hat dies nun mit Hilfe von Absorptions- und Emissionsspektroskopie an BESSY II untersucht. Dabei zeigten sie, dass Nanodiamanten in wässriger Lösung „Löcher“ im Valenzband aufweisen. Die Ergebnisse sind in „Nanoscale“ publiziert.

„In Wasser ist die Wechselwirkung zwischen den Nanodiamanten und den benachbarten Molekülen und Ionen besonders stark“, erklärt Petit. Durch Zugabe von Salzen oder der Veränderung des PH-Werts lässt sich zum Beispiel beeinflussen, wie gut Nanodiamanten bestimmte Wirkstoffe absorbieren. Bei ihrer Untersuchung haben Petit und seine Kollegen entdeckt, dass sich die elektronischen Zustände bei Nanodiamanten auf festen Substraten deutlich von denen unterscheiden, die Nanodiamanten in wässriger Lösung besitzen. 

Mit Hilfe der Mikrojet-Technik, die von Emad Aziz am HZB entwickelt wurde, untersuchten sie die flüssigen Proben im Vakuum mit Röntgenspektroskopie  und ermittelten ein detailliertes Bild von besetzten und unbesetzten Elektronenzuständen in Valenz- und Leitungsbändern. Sie fanden,  dass sich in der wässrigen Dispersion an den Oberflächen der Nanodiamanten so genannte „Löcher“, also fehlende Elektronen, im Valenzband bilden: „Dies deutet darauf hin, dass an der Oberfläche von Nanodiamanten Elektronen an die umgebenden Wassermoleküle abgegeben werden“, sagt Petit. Über die elektronische Struktur der Nanoteilchen könnte man auch ihre chemischen, optischen und katalytischen Eigenschaften beeinflussen, vermuten die Physiker. In weiteren Untersuchungen möchten sie abklären, ob sich die katalytische Wirkung von Nanodiamanten in wässriger Umgebung für die lichtinduzierten Aufspaltung von Wasser in Sauerstoff und Wasserstoff gezielt steigern lässt.

Referenz: Valence holes observed in nanodiamonds dispersed in water, Tristan Petit, Mika Pflüger, Daniel Tolksdorf, Jie Xiao and Emad Flear Aziz, Nanoscale, 2015, DOI: 10.1039/C4NR06639A

Postskriptum: Ende 2014 erhielt Dr. Tristan Petit für seine Doktorarbeit einen C’Nano-Preis in der Kategorie „Interdisziplinäre Forschung“.  In der Dachorganisation C’Nano haben sich mehrere Forschungseinrichtungen Frankreichs zusammengeschlossen, die Nanomaterialien und Nanotechnologien untersuchen und entwickeln.
Tristan Petit untersuchte für seine Promotion am Laboratoire Capteurs Diamant (CEA LIST Saclay) Eigenschaften von Nanodiamanten und ihre potentielle Eignung für die Krebstherapie. Seit Juni 2013 forscht Dr. Tristan Petit mit einem Postdoktoranden-Stipendium der Alexander von Humboldt-Stiftung im Team von Prof. Dr. Emad Flear Aziz am HZB.

Mehr Informationen zu den C’Nano-Promotionspreisen:

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.