Maximale Effizienz, minimaler Einsatz

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt.

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt. © Uni Potsdam

Dünnschichtsolarzelle auf Siliziumbasis nutzt mit organischer Zusatzschicht auch infrarotes  Licht 

Die neue hybride Solarzelle ist aus zwei extrem dünnen amorphen Siliziumschichten sowie einer organischen Schicht aufgebaut, zusammen sind ihre aktiven Schichten nicht dicker als einen Mikrometer. Trotz minimalem Materialeinsatz erreicht die Hybridzelle damit einen Rekord-Wirkungsgrad von 11,7 %. Die organische Schicht besteht aus so genannten „Fußballmolekülen“ oder Fullerenen, die mit halbleitenden Polymeren gemischt sind. Diese Schicht wandelt auch noch das Infrarotlicht in elektrische Energie um, das in den Siliziumschichten nicht genutzt werden kann.

Die komplementäre Verbindung organischer und anorganischer Materialien in einer Stapelzelle ist eine vielversprechende Option für Solarzellen der Zukunft. Die Zelle wurde im Rahmen des BMBF-Programms „Spitzenforschung und Innovation  in den Neuen Ländern“ gemeinsam von Teams der Universität Potsdam und des Helmholtz-Zentrums Berlin (HZB) entwickelt, die ihre Arbeit nun im renommierten Fachmagazin „Advanced Materials“ publiziert haben.

Grundbaustein der Zelle ist eine sehr dünne Schicht aus amorphem Silizium, die mit Wasserstoff durchsetzt ist (a-Si:H). Solche einfachen Dünnschicht-Solarzellen erreichen nur geringe Wirkungsgrade und nutzen lediglich Photonen im blauen und grünen Bereich des Lichtspektrums.

Steffen Roland, Doktorand aus der Gruppe von Professor Dr. Dieter Neher an der Universität Potsdam, und Sebastian Neubert, Doktorand aus der Gruppe von Professor Dr. Rutger Schlatmann vom Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik (PVcomB) des HZB, haben diese Schicht zunächst um eine weitere a-Si:H-Schicht zu einer Tandemzelle erweitert und zusätzlich eine organische Schicht aufgebracht, die es ermöglicht, auch infrarotes Licht in elektrische Energie umzuwandeln. So konnten sie den Wirkungsgrad der Triplezelle  auf über 11 % steigern. Gleichzeitig ist diese Solarzellenarchitektur deutlich beständiger gegenüber Alterungseffekten. Dieser Erfolg zeigt eindrucksvoll, wie die enge Zusammenarbeit von Doktoranden aus unterschiedlichen Fachrichtungen (organische Halbleiter und  anorganische Halbleiter) zu neuen Devicestrukturen mit verbesserten Eigenschaften führt.

„Die Zelle lässt sich einfach mit etablierten Dünnschichttechnologien herstellen, die industriegängig und auch für die Produktion von großen Folien geeignet sind“, erklärt Rutger Schlatmann. Und Dieter Neher fügt an: „Die hohen Absorptionskoeffizienten der a-Si:H-Schichten und die Eigenschaften der organischen Schicht ermöglichen eine aktive Schichtstruktur, die nicht dicker als einen Mikrometer ist, das ist maximale Effizienz mit minimalem Einsatz!“.

Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency
DOI: 10.1002/adma.201404698

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.