Batman zeigt den Weg zu kompakter Datenspeicherung

<span class="imageCaption">Forschende am PSI erblickten auf einem f&uuml;nf mal f&uuml;nf Mikrometer kleinen Quadrat eine kuriose magnetische Substruktur schwarz auf weiss &ndash; und f&uuml;hlten sich an die stilisierte Fledermaus des Batman-Logos erinnert. Die schwarzen Bereiche zeigen an, wo die Magnetisierung nach unten weist, also ins Bild hinein; in den weissen weist sie nach oben.<br /></span>

Forschende am PSI erblickten auf einem fünf mal fünf Mikrometer kleinen Quadrat eine kuriose magnetische Substruktur schwarz auf weiss – und fühlten sich an die stilisierte Fledermaus des Batman-Logos erinnert. Die schwarzen Bereiche zeigen an, wo die Magnetisierung nach unten weist, also ins Bild hinein; in den weissen weist sie nach oben.
© PSI

Forschenden am Paul Scherrer Institut PSI ist es gelungen, winzige magnetische Strukturen mit Laserlicht umzuschalten und die Veränderung zeitlich zu verfolgen. Dabei blinkte kurz ein nanometergrosser Bereich auf, der skurrilerweise an das Fledermaus-Symbol von Batman erinnert. Die Forschungsergebnisse könnten die Datenspeicherung auf Festplatten kompakter, schneller und effizienter machen.

Auszug aus der PSI_Mitteilung:..Die Forschenden am PSI arbeiten in diesem Projekt mit Kollegen aus den Niederlanden, Deutschland und Japan zusammen. Bereits vor zwei Jahren konnte die internationale Forschungsgruppe zeigen, dass ein kurzer, intensiver Laserpuls Mikro-Magnete mehrere hundert Mal schneller schalten kann als ein Magnetkopf. Der Laser ist dabei auch noch energieärmer und damit kostengünstiger. Der Clou ist offenbar, dass das Laserlicht die winzigen Magnete sehr schnell aufheizt und sie dadurch in den jeweils anderen Zustand überführen kann. «Die magnetische Schaltung mit Licht funktioniert eindeutig. Aber warum genau sie funktioniert, das ist in der Forschergemeinde noch umstritten», erklärt Frithjof Nolting, Forscher am PSI und Leiter der Studie.

„Dies könnte der Weg sein, um eines Tages noch mehr Daten auf noch kleinere Festplatten zu speichern“, sagt Loïc Le Guyader, der ebenfalls an den PSI-Experimenten beteiligt war. Inzwischen arbeitet er am Helmholtz-Zentrum Berlin.

Lesen Sie die gesamte Pressemitteilung hier:

http://www.psi.ch/media/batman-zeigt-den-weg-zu-kompakter-datenspeicherung


Originalveröffentlichung

Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures.
L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel and F. Nolting,
Nature Communications, 12 January 2014,
DOI: 10.1038/ncomms6839

Laura Hennemann /PSI

  • Link kopieren

Das könnte Sie auch interessieren

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit eröffnet neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. 
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.