Elektronenspin-Flips unter neuem Licht

Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II. <span><span><br /></span></span>

Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II.
© HZB

Wissenschaftler im Berlin Joint EPR Lab am Helmholtz-Zentrum Berlin (HZB) und der University of Washington (UW) haben eine neue theoretische Beschreibung ausgearbeitet, die es erlaubt, Übergangswahrscheinlichkeiten zwischen Spin-Zuständen in „Elektronen Paramagnetische Resonanz“ (EPR)-Experimenten mit beliebiger Orientierung und Polarisation der anregenden Strahlung zu berechnen. Die Physiker haben den neuen Ansatz bereits mit einem Terahertz-EPR-Experiment an der Synchrotronquelle BESSY II getestet und veröffentlichen ihre Arbeit am 6. Januar 2015 im renommierten Fachjournal Physical Review Letters (DOI 10.1103/PhysRevLett.114.010801).

Elektronenspins sind Quantenobjekte mit faszinierenden Eigenschaften. Sie können als empfindliche Sonden genutzt werden, um die Struktur von Materialien auf atomarer Ebene zu untersuchen. Dabei verhalten sich Elektronenspins wie winzige Magnete, die in einem äußeren Magnetfeld entweder parallel oder antiparallel ausgerichtet werden. Elektromagnetische Strahlung ist genau dann in der Lage Übergänge zwischen diesen beiden Zuständen (Spin-Flips) herbeizuführen, wenn ihre Energie genau dem Energieunterschied der beiden Orientierungen entspricht. Man bezeichnet diese Methode als „Elektronen Paramagnetische Resonanz“ (EPR), mit ihr können die Wechselwirkungsenergien der Spins untersucht und ihre Zustände manipuliert werden. Die Wahrscheinlichkeit für einen EPR-induzierten Spin-Flip hängt davon ab, wie die magnetische Komponente der elektromagnetischen Strahlung gegenüber dem äußeren Magnetfeld orientiert ist. Hier bestand bisher eine Lücke in der theoretischen Beschreibung, da Übergangswahrscheinlichkeiten bislang nur für wenige experimentelle Anordnungen berechnet werden.

Gleichungen für jede Geometrie

Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack (HZB) und Stefan Stoll (UW) ist es nun gelungen diese Beschränkung zu überwinden und Gleichungen abzuleiten, die die Übergangswahrscheinlichkeiten auch für andere experimentellen Anordnungen beschreiben. Die Gleichungen gelten für beliebige Ausrichtungen der anregenden Strahlung gegenüber dem äußeren Feld und für beliebig polarisierte Strahlung. „ Auf der Basis dieser Theorie haben wir ein allgemeinzugängliches Computerprogramm entwickelt, das es erlaubt die Ergebnisse von EPR-Experimenten  zu interpretieren und sogar vorherzusagen, die bisher nur teilweise verstanden wurden“ erklärt Joscha Nehrkorn.

Test bereits gelungen

Um ihren Ansatz zu testen, haben die Autoren die Spins von dreiwertigen Eisenatomen in kleinen organischen Molekülen, so genannten Porphyrinen, in einem hohen Magnetfeld ausgerichtet und dann mit intensiver linear polarisierter THz-Strahlung aus dem Elektronenspeicherring BESSY II des HZB bestrahlt. Dabei variierten sie die Richtung der magnetischen Komponente der THz-Strahlung relativ zum äußeren Magnetfeld. Durch den Vergleich zwischen berechneten und experimentell ermittelten EPR-Signalen konnten sie die Richtigkeit des neuen theoretischen Ansatzes überprüfen. „Das Experiment zeigt auf eindrucksvolle Weise das Potential der kohärenten Synchrotronstrahlung für THz-EPR Experimente. Diese Möglichkeiten können in Zukunft durch BESSY VSR, die nächste Ausbaustufe unserer Strahlungsquelle, sogar noch gesteigert werden“ erläutert Karsten Holldack, der den THz-Messplatz wissenschaftlich betreut.

Alexander Schnegg, der das Projekt im Rahmen des DFG Schwerpunktprogrammes SPP 1601 durchführt, erklärt: „Diese Weiterentwicklungen in der EPR-Methodik können zukünftig helfen, die Aussagekraft von EPR-Experimenten z.B. für Fragestellungen in den Lebenswissenschaften, neuen Informationstechnologien (Spintronik, Quantencomputer) oder in der Forschung an Energiematerialien deutlich zu steigern und bereiten den Weg für neuartige EPR-Experimente.“

Den Beitrag finden Sie hier:
General Magnetic Transition Dipole Moments for Electron Paramagnetic Resonance (Autoren: J. Nehrkorn, A. Schnegg, K. Holldack and S. Stoll), Physical Review Letters.

red.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.