26 Tesla! Der Hochfeldmagnet übertrifft die Erwartung

Das HFM-Team Anfang 2014 mit dem gerade gelieferten Hochfeldmagneten.

Das HFM-Team Anfang 2014 mit dem gerade gelieferten Hochfeldmagneten. © P. Dera/HZB

Hier wird die resistive Bitter-Spule vorsichtig eingebaut. Die äußere Spule ist supraleitend und muss mit flüssigem Helium gekühlt werden.

Hier wird die resistive Bitter-Spule vorsichtig eingebaut. Die äußere Spule ist supraleitend und muss mit flüssigem Helium gekühlt werden. © HZB

Armdick sind die Kupferkabel, die den HFM mit Strom versorgen.

Armdick sind die Kupferkabel, die den HFM mit Strom versorgen. © HZB

Der Bildschirm zeigt es: 26,2 Tesla und 19997 Ampere.

Der Bildschirm zeigt es: 26,2 Tesla und 19997 Ampere.

Es ist geschafft! Der Hochfeldmagnet produziert zuverlässig ein Magnetfeld von rund 26 Tesla und hält diesen Wert auch stabil über längere Zeit. Dabei übertreffen die 26 Tesla sogar den Zielwert von 25 Tesla, der Magnet ist also sogar noch etwas stärker als erhofft. Am Donnerstagnachmittag, den 16.10.2014, konnte Dr. Peter Smeibidl, der Leiter des achtköpfigen HFM-Teams, diesen Erfolg melden und sich bei allen bedanken, die dazu beigetragen haben, den komplexen Hochfeldmagneten mit seinen Kühlanlagen und der eigenen Stromversorgung mit 4 Megawatt Leistung aufzubauen.

Darauf warten nicht nur Wissenschaftlerinnen und Wissenschaftler aus dem HZB, sondern auch Messgäste aus aller Welt. Denn bestimmte quantenphysikalische Phänomene in Materie werden erst unter extremen Magnetfeldern deutlich sichtbar und Neutronen sind dafür die idealen Sonden, eine Kombination, die dann nur das HZB anbieten kann. Unter den extremen Magnetfeldern oberhalb von 20 Tesla könnten neue Ordnungszustände und Phasenübergänge in Hochtemperatursupraleitern, neuen Materialien für die Informationstechnologie und anderen Proben erstmals auch experimentell erforscht werden.

Zügiger Aufbau

Insgesamt ging die Erstinbetriebnahme des Hochfeldmagneten am HZB vergleichsweise reibungslos voran. „Die meisten Probleme, die in der Testphase aufgetreten sind, konnten wir überraschend zügig lösen“, sagt Projektkoordinator Dr. Hartmut Ehmler. Dies zeigt, dass die Qualitätskontrolle während der Herstellung der Spulen und während der Systemmontage funktioniert hat und alle Designvorgaben in die Realität umgesetzt wurden.

Alle Systeme gründlich getestet

Ein separater Test der resistiven Spule fand, nach Abschluss der Endmontage bereits im Juni statt. Nach dem Abkühlen der supraleitenden Spule, das wegen der großen Masse mehrere Wochen in Anspruch nahm, konnten dann Mitte August die entscheidenden Tests des Hybridsystems, also beider Spulen in Serienschaltung, beginnen: Das Hochfahren des Stroms, zuerst von null auf nur 1000 Ampere, und dann auf immer höhere Werte. Dabei wurde unter anderem getestet, wie das System auf sich ändernde Stromstärken reagiert (Induktion), welche Kräfte und Spannungsspitzen dabei auftreten und ob dies mit dem vorher berechnetem Verhalten konsistent ist.

Unterstützt wurde das HZB-Team von Ingenieuren aus dem National High Field Laboratory, Tallahassee, Florida, die sowohl die supraleitende äußere Spule als auch die resistive innere Spule eigens für das HZB entwickelt und hergestellt hatten.

Bis zuletzt spannend

Aus Sicherheitsgründen wurde das Verhalten der gesamten Anlage bei einer Notabschaltung und anderen Störfällen getestet. Bei ca. 14 Tausend Ampère, welches der halben Leistung entspricht, traten unerwartete Schwierigkeiten auf: Die freigesetzte Energie während einer kontrollierten Abschaltung überstieg vorherige Berechnungen und führte zu einer größeren Erwärmung und Druckanstieg im Kühlmittel Helium als vorgesehen. Um das Risiko zu minimieren wurden dann in den folgenden Wochen die Ventile der Kryoanlage angepasst, bevor die Tests bei höheren Strömen fortgesetzt werden konnten.

Bis zuletzt blieb es spannend, ob die letzten paar Tausend Ampere bis zum Ziel weitere Überraschungen bereithalten würden. Aber zum Glück arbeiteten alle Systeme störungsfrei zusammen, so dass der Strom schrittweise bis zum Endwert von 20 Tausend Ampère gesteigert werden konnte.

In den nächsten Wochen werden noch einige abschließende Tests durchgeführt bevor der Magnet dann bis Ende des Jahres an seinen endgültigen Platz in der Neutronenhalle II gebracht wird.

Mehr Informationen:
Wir haben den Aufbau des HFM im www.hzbzlog.com dokumentiert. Sie können dort nachlesen, was das Team erlebt hat und welche Probleme zu bewältigen waren. Bleiben Sie auf dem Laufenden, welche Herausforderungen beim Umzug des über 25 Tonnen schweren Magneten noch bewältigt werden müssen.

Interview mit Prof. Dr. Bella Lake zur wissenschaftlichen Motivation

Zum Aufbau des Hochfeldmagneten

Zur Erinnerung: Vor rund einem Jahr wurde die supraleitende Spule per Frachtflugzeug aus den USA nach Italien transportiert. Im Januar wurde der vormontierte Magnet per LKW über die Alpen gebracht.

Reportage nach Fertigstellung der supraleitenden Spule und zum Transport nach Italien

Bericht zur Ankunft des Magneten am HZB:

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.