Gewünschte Unordnung: DFG-Schwerpunktprojekt startet mit Kick-off Meeting
Die Teilnehmer des Kick-off-Meetings vor dem BESSY-Gebäude
Auf ca. 40 Postern wurden Themenideen für das Schwerpunktprogramm präsentiert
Im Mai hat die Deutsche Forschungsgemeinschaft (DFG) das neue Schwerpunktprogramm „Tailored disorder“ (SPP 1839) eingerichtet (wir berichteten), ab jetzt können Forschergruppen Anträge zu diesem Programm einreichen. Im Rahmen des SPP 1839 fördert die DFG Projekte, die sich mit der Entwicklung optischer Technologien auf der Basis von „maßgeschneiderter Unordnung“ befassen.
Das Programm startet ab 2015 bis voraussichtlich 2021 mit einem Finanzvolumen von insgesamt rund 12 Millionen Euro. Um die Interessenten an dem Thema besser zu vernetzen hat das Programmkomitee unter Leitung von Koordinatorin Prof. Silke Christiansen (HZB) ein Kick-off-Meeting organisiert, an dem Ende September zirka 65 Wissenschaftlerinnen und Wissenschaftler teilnahmen.
Sie präsentierten ihre Themenideen auf 40 Postern, die zusätzlich im Rahmen von 35 Kurzvorträgen diskutiert wurden. Zuvor hatte das Programmkomitee die Struktur des SPP erläutert, das sich in fünf Themenfelder unterteilen lässt: Natural photonic systems in Biology, Physics of disordered materials, Computational Simulation, Material Science and Engineering sowie Interface Chemistry.
„Das Treffen diente dazu, dass sich die Interessenten kennenlernen und austauschen, um gemeinsam interessante und erfolgversprechende Anträge formulieren zu können“, erläutert Silke Christiansen. Im Ergebnis der Forschungen sollen neue Materialien entwickelt werden, die das Prinzip der maßgeschneiderten Unordnung in ihrer Struktur ausnutzen.
Dies ist neu, denn bislang galt die perfekte Ordnung von Nanostrukturen als Voraussetzung für ihre vielfältigen Funktionalitäten. Doch erste Publikationen belegen das Potenzial, das eine zufällig hereingebrachte Unordnung für optische Technologien mit sich bringt. Für die DFG ein Grund, solche Forschungsansätze nun gezielt zu fördern. Neuartige Solarzellen, optische Elemente oder Speziallacke könnten das Ergebnis sein.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14065;sprache=en),
- Link kopieren
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
-
Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.