DFG-Präsident besucht BESSY II

Im Kontrollraum von BESSY II ließ sich der DFG-Präsident Prof. Dr. Peter Strohschneider erläutern, wie die Synchrotronquelle betrieben wird. Foto: HZB

Im Kontrollraum von BESSY II ließ sich der DFG-Präsident Prof. Dr. Peter Strohschneider erläutern, wie die Synchrotronquelle betrieben wird. Foto: HZB

Am 18. Juli besuchte Prof. Dr. Peter Strohschneider den Berliner Elektronenspeicherrng BESSY II am HZB und informierte sich über die Bedeutung der Synchrotronstrahlung für die Material- und Energieforschung. Außerdem konnte er das PVcomB besichtigen.

Prof. Dr. Anke Kaysser-Pyzalla gab einen Überblick über die Forschung an BESSY II, den Nutzerbetrieb und die Pläne für die Zukunft. Anschließend sprach Peter Strohschneider mit mehreren verantwortlichen Wissenschaftlerinnen und Wissenschaftlern. So erläuterte Prof. Dr. Alexander Föhlisch das Konzept von BESSY-VSR, mit dem Nutzer in Zukunft variable Pulslängen für ihre Forschung auswählen können. Prof. Dr. Jens Knobloch führte durch den Kontrollraum von BESSY II. Außerdem berichteten Kolleginnen und Kollegen aus der Solarforschung über ihre Ergebnisse und stellten das Kompetenzzentrum PVcomB vor, das Strohschneider ebenfalls besichtigen konnte.

Peter Strohschneider ist seit Anfang 2013 Präsident der Deutschen Forschungsgemeinschaft. Von 2006 bis 2011 war der Mediävist Vorsitzender des Wissenschaftsrats. Es war sein erster Besuch bei BESSY II.

 

red.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.