Eine neue Klasse von Halbleitern für effiziente nano-optische Bauteile

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen  mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht.

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht. © F. Kronast/HZB

Wie die Infoplattform nanotechweb.org berichtet, könnten sich dünne Schichten aus bestimmten Chalkogeniden als nanooptische Bauelemente eignen, zum Beispiel als LEDs, Laser oder Solarzellen.  Einatomare Lagen aus solchen Verbindungen verhalten sich wie zweidimensionale Halbleiter. Nun haben Wissenschaftler der University of California und des Lawrence Berkeley National Lab eine so genannte Heteroverbindung aus zwei unterschiedlichen Chalkogeniden hergestellt und ihre elektronischen und optischen Eigenschaften auch am HZB an BESSY II untersucht.

Die Probe bestand aus einer einatomaren Lage aus Wolframselenid, die auf Molybdänsulfid aufgebracht war. „An BESSY II haben wir mit lokaler Röntgen-Photoemissionsspektroskopie am SPEEM-Mikroskop gesehen,  dass beide Schichten elektronisch miteinander koppeln und ein Ladungstransfer stattfindet“, sagt Dr. Florian Kronast vom HZB. Damit sind solche Chalkogenid-Heteroverbindungen interessante Kandidaten für neue Bauelemente.

Zum Artikel in nanotechweb.org:
Die Originalarbeit wurde in den PNAS publiziert: PNAS doi: 10.1073/pnas.1405435111

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.