Maßgeschneiderte Unordnung für optische Anwendungen

Ob eine Oberfläche (hier ein Schmetterlingsflügel) bunt schillert oder ebenmäßig weiß wirkt, hängt auch von ihrer Nanostrukturierung ab.

Ob eine Oberfläche (hier ein Schmetterlingsflügel) bunt schillert oder ebenmäßig weiß wirkt, hängt auch von ihrer Nanostrukturierung ab. © Hans Bernhard/Wikipedia/ unter CC

Silke Christiansen, HZB, koordiniert neues DFG Schwerpunkt-Programm

Die Deutsche Forschungsgemeinschaft (DFG) richtet in den nächsten sechs Jahren 16 neue Schwerpunktprogramme (SPP) ein. Darunter ist auch das SPP „Tailored Disorder“, das von Prof. Dr. Ing. Silke Christiansen (HZB, FU Berlin, Max Planck Institut für die Physik des Lichts) koordiniert wird. Ab 2015 werden die beteiligten Forschergruppen neuartige optische Technologien mit Hilfe von „maßgeschneiderter Unordnung“ erforschen. Das SPP „Tailored Disorder“ wird von 2015 bis voraussichtlich 2021 mit insgesamt rund 12 Mio. Euro von der DFG gefördert werden.

In den letzten Jahren hat es auf dem Gebiet der Nano-Optik große Fortschritte gegeben. Bisher wurde ein Höchstmaß an Regelmäßigkeit als Voraussetzung für perfekte Funktionalität angenommen. Dabei liefert die Natur viele Vorlagen für die Nutzung maßgeschneiderter Unordnung auf kleinsten Strukturskalen: So zeigen Schmetterlingsflügel schillernde Farben, während das nahezu identische Ausgangsmaterial bei Käfern der Familie Cyphochilus mit einer dreidimensionalen Nano-Architektur zu einer fast perfekt weißen, gleichmäßig streuenden Oberfläche führt. Erst in den letzten zwei Jahren werden auch unregelmäßige Strukturen systematisch auf ihren Nutzen für optische Anwendungen untersucht. Erste Publikationen belegen das erstaunliche Potenzial zufälliger Nanostrukturen, wie etwa das kleinste Spektroskop der Welt, das auf Unordnung basiert.

Das Potenzial von "Unordnung" ausloten

Um systematisch die Möglichkeiten dieser neuen Klasse von Materialien auszuloten, arbeiten  im Kernteam des SPP „Tailored Disorder“ anerkannte Wissenschaftlerinnen und Wissenschaftler aus mehreren Disziplinen zusammen, von den naturwissenschaftlichen Fachrichtungen Biologie, Physik, Chemie über die Informatik bis hin zur Ingenieursdisziplin Materialwissenschaften. Mit dieser vielfältigen Expertise kann die theoretische Beschreibung komplexer Systeme, die numerische Simulation, die Herstellung und Modifikation mit Hilfe von Nanostrukturierung (Top-Down-Ansatz) und die chemische Synthese (Bottom-up-Ansatz) realisiert werden, um am Ende maßgeschneiderte technologische Anwendungen von der Planung bis zur großskaligen Realisierung etablieren zu können.

Neuartige Solarzellen, optische Elemente oder Spezial-Lacke

„Beherrschen wir diese neuartigen Materialien, wird das völlig neue Möglichkeiten zur Kontrolle breitbandigen Lichts ergeben, da die Anzahl der Freiheitsgrade mit maßgeschneiderter Unordnung viel höher ist als für geordnete Systeme“, erklärt die Koordinatorin Prof. Dr. Ing. Silke Christiansen vom Helmholtz-Zentrum in Berlin (HZB). Die möglichen Anwendungen reichen von verbesserten Solarzellen über neuartige optische Elemente bis hin zu speziellen Autolacken. Aber auch in der Grundlagenforschung verspricht man sich neue Erkenntnisse, zum Beispiel zur so genannten Anderson-Lokalisierung in drei Dimensionen oder zum Verständnis der  Eigenschaften von  Zufalls-Lasern. Auch die Medizin wird von den Ergebnissen des SPP „Tailored Disorder“ profitieren: Denn versteht man die Streu-Eigenschaften von organischen Materialien wie etwa der menschlichen Haut, wird es auch möglich sein durch sie „hindurchzusehen“.


Die Partner sind :

  • Prof. Dr. Kurt Busch, Humboldt-Universität zu Berlin & Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.
  • PD Dr. Silke Christiansen (Koordinatorin), Max-Planck Institut für die Physik des Lichts, Erlangen  & Institut ‘Nanoarchitekturen für die Energiewandlung’ am HZB
  • Dr. Helge Fabritius, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
  • Prof. Dr. Georg von Freymann, Technische Universität Kaiserslautern & Fraunhofer Institut für Physikalische Messtechnik, Kaiserslautern
  • Prof. Dr. Kristel Michielsen, Institute for Advanced Simulation Jülich Supercomputing Centre, Forschungszentrum Jülich & RWTH Aachen
  • Prof. Dr. Wolfgang Tremel, Johannes Gutenberg-Universität Mainz
  • Prof. Dr. Siegfried R. Waldvogel, Johannes Gutenberg-Universität Mainz
  • Prof. Dr. Cordt Zollfrank (Ko-Koordinator), Technische Universität München

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.