Wichtiger Prozess in neuem Typ von Solarzellen verstanden

<p class="MsoNormal"><span>Diese Aufnahme mit einem Rasterelektronenmikroskop zeigt den Aufbau der Perowskit-Solarzelle: Auf einem Substrat (Glas und FTO) ist die Tr&auml;gerstruktur aus hochpor&ouml;sem Titandioxid aufgebracht, in dessen Poren das Perowskit  eingelagert ist. Diese Schicht ist mit einer organischen Schicht (HTM) sowie einem Goldkontakt bedeckt.  </span></p>
<p class="MsoNormal"><span> </span>

Diese Aufnahme mit einem Rasterelektronenmikroskop zeigt den Aufbau der Perowskit-Solarzelle: Auf einem Substrat (Glas und FTO) ist die Trägerstruktur aus hochporösem Titandioxid aufgebracht, in dessen Poren das Perowskit eingelagert ist. Diese Schicht ist mit einer organischen Schicht (HTM) sowie einem Goldkontakt bedeckt.

© EPFL

Zu den großen Durchbrüchen in 2013 hat das Magazin Science Solarzellen auf Perowskit-Basis gezählt: In nur wenigen Jahren hat sich der Wirkungsgrad solcher Zellen von nur drei auf jetzt über 16 Prozent gesteigert. Doch es gibt wesentliche Unterschiede zu konventionellen Solarzellen, insbesondere war bislang noch nicht gut verstanden, wie hier die zentralen Prozesse genau ablaufen: Von der Absorption des Lichts über die Ladungstrennung im Inneren des Materials bis hin zum Ladungstransport entlang der Oberfläche. Diesen letzten Prozess konnten nun drei Teams aus der Ecole polytechnique fédérale in Lausanne (EPFL) und dem HZB-Institut für Solare Brennstoffe aufklären. Sie untersuchten dafür Solarzellen auf Perowskit-Basis mit unterschiedlichen Architekturen. Ihre Ergebnisse könnten das gezielte Design noch leistungsstärkerer Perowskit-Solarzellen ermöglichen. Die Arbeit wurde am 19. Januar online in Nature photonics veröffentlicht.

Die Teams um Michael Grätzel und Jaques E. Moser am EPFL haben mit der Gruppe um Roel van de Krol am HZB-Institut für Solare Brennstoffe zusammengearbeitet.  Mit  Zeit-aufgelösten Spektroskopie Methoden wie der ultraschnellen Laserspektroskopie und der Mikrowellenphotoleitfähigkeit konnten sie bestimmen, wie sich Ladungsträger entlang von Perowskit-Oberflächen bewegen und rekombinieren.

Sie untersuchten diese Prozesse mit verschiedenen Zell-Architekturen: Dabei nutzten sie halbleitendes Titan-Dioxid  oder isolierende Aluminium-Trioxid-Schichten als poröse Trägerstrukturen. Sie imprägnierten diese porösen Strukturen mit Blei- und Jodhaltigem Perowskit  (CH3NH3PbI3)  sowie einem organischen Material, das für den Transport von „Löchern“ sorgte.

Mit den zeitaufgelösten Messungen konnten sie zwei Phänomene genau vermessen, die für den Wirkungsgrad der Zelle entscheidend sind: die Ladungstrennung und ihre Rekombination. Die Ladungstrennung wird durch das einfallende Licht im Perowskit ausgelöst. Messungen mit ultraschneller Laserspektroskopie an der EPFL zeigten, dass diese Ladungstrennung  extrem rasch abläuft, in weniger als einer Pikosekunde. Die Rekombination von Ladungsträgern ist dagegen ein unerwünschter Vorgang, weil sie den Wirkungsgrad der Solarzelle vermindert. „Dieser Prozess der Rekombination findet in Architekturen mit Titandioxid deutlich langsamer statt als in solchen mit Aluminiumtrioxid. Das haben wir durch die Messung der Mikrowellenphotoleitfähigkeit ermitteln können“, erklärt Dennis Friedrich aus der Gruppe um van de Krol.

Die Ergebnisse zeigen, dass in Perowskit-Solarzellen der Ladungstransfer ultraschnell und effizient stattfinden kann und dass Architekturen, die auf einer Kombination von Titandioxid und Lochleitungsschicht basieren, deutlich besser geeignet sind, um die Rekombination zu unterdrücken. 

Mehr Informationen:
Nature photonics 'Unraveling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells'   doi:10.1038/nphoton.2013.374

arö/EPFL

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.