Die Vermessung von Molekülen: Physiker der Uni Graz spüren Elektronenzustände auf

In einem iterativen Prozess werden die ARPES-Messungen mit einem Algortihmus zu Wellenfunktionen verrechnet und erneut interpretiert.

In einem iterativen Prozess werden die ARPES-Messungen mit einem Algortihmus zu Wellenfunktionen verrechnet und erneut interpretiert.

Seit der Formulierung der Quantenphysik vor gut hundert Jahren träumen Wissenschaftlerinnen und Wissenschaftler davon, die quantenmechanischen Orbitale von Elektronen in Atomen, Molekülen und Festkörpern zu messen. Denn diese Orbitale bestimmen die chemischen und physikalischen Eigenschaften des Materials. Zwei Arbeitsgruppen um Ass.-Prof. Dr. Peter Puschnig und Ao.Univ.-Prof. Dr. Michael Ramsey am Institut für Physik an der Karl-Franzens-Universität Graz ist es nun gelungen, Elektronenorbitale von Kohlenwasserstoff-Molekülen auf einem Silbersubstrat sichtbar zu machen, indem sie Messungen an BESSY II  mit ab inititio-Berechnungen  kombiniert haben. Auch KollegInnen des deutschen „Forschungszentrums Jülich“ sind an der Arbeit beteiligt, die nun in der aktuellen Ausgabe der „Proceedings of the National Academy of Sciences (PNAS)“ publiziert worden ist.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen beschrieben. In der Quantentheorie wird die Wellennatur mathematisch durch die räumliche Wellenfunktion, das Orbital, erfasst. „Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Eigenschaften des Systems ableiten“, erklärt Puschnig. „Die Wellenfunktion selbst ist jedoch keine direkt beobachtbare Größe, die sich im Experiment bestimmen lässt.“ Deshalb waren die ForscherInnen überrascht, als sie kürzlich mithilfe eines experimentellen Aufbaus und eines mathematischen Tricks die vollständige Wellenfunktion inklusive deren Phasenbeziehung für eine Reihe von organischen Molekülen bestimmen konnten.

Vermessung von Orbitalen
Für ihre Untersuchungen verwendeten sie einen einfachen und unkonventionellen Zugang: In ihrem Versuchsaufbau bedienten sie sich des Photoeffekts und schossen mithilfe von ultraviolettem Licht die Elektronen förmlich aus den Molekülen heraus. Die anschließende Vermessung der Energie- und Winkelverteilung der Elektronen gab Aufschluss über deren Bindungsenergie und räumliche Verteilung im Molekül. Bei dieser Messmethode geht allerdings eine wichtige Information, die Phasenbeziehung, verloren.

Bei der Rekonstruktion dieser fehlenden Information kommt den PhysikerInnen etwas zugute, das mit den mathematischen Eigenschaften der „Fourier-Transformation“ zu tun hat: „Wenn man die räumliche Ausdehnung der Wellenfunktion kennt, die durch die Größe des Moleküls vorgegeben ist, so kann die fehlende Phase durch ein mathematisches Verfahren schrittweise rekonstruiert werden“, klärt der Doktorand Daniel Lüftner auf. Dass dieses Verfahren funktioniert, konnte am Beispiel von fünf Molekülorbitalen gezeigt werden. Diese rekonstruierten Orbitale werfen nicht nur ein neues Licht auf das theoretische Konzept von Orbitalen, sondern liefern wichtige Einblicke in das Verhalten von Elektronen an Grenzflächen zwischen Metallen und organischen Halbleitern.


Publikation: „Imaging the wave functions of adsorbed molecules“. PNAS, 2013, published online


 

Uni Graz / arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.