HZB an neuem SFB zu Metalloxid-Wasser-Systemen beteiligt

Dr. Bernd Winter in der Experimentierhalle von BESSY II.  Foto: Stephan Thürmer

Dr. Bernd Winter in der Experimentierhalle von BESSY II. Foto: Stephan Thürmer

Ein Forschungsteam vom HZB ist am neuen Sonderforschungsbereich „Molekulare Einblicke in Metalloxid/Wasser-Systeme“ beteiligt, der von der Deutschen Forschungsgemeinschaft ab sofort gefördert wird. Dr. Bernd Winter von der Nachwuchsgruppe um Prof. Dr. Emad Aziz wird dabei Metallionen und Metall-Oxid-Komplexe  in wässriger Lösung an BESSY II untersuchen.

Dazu verwenden die Forscher einen flüssigen Mikrojet im Vakuum, der es erlaubt, wässrige Lösungen mittels Photoelektronen-Spektroskopie an BESSY II zu vermessen. Diese Messungen ermöglichen Rückschlüsse auf die Bindungsenergien und auf elektronische Relaxationsprozesse und geben damit Aufschluss über die Wechselwirkung der Metall-Oxid-Komplexe mit den umgebenden Wassermolekülen. Außerdem  lassen sich damit auch Vorläufermoleküle bestimmen, die der Bildung  größerer Metall-Oxo-Netzwerke vorausgehen.

Die Erkenntnisse sind wichtig, um Metalloxide gezielt für konkrete Anwendungen synthetisieren zu können, was typischerweise in wässriger Lösung erfolgt. Denn Metalloxide sind technisch extrem interessant, sie werten Baumaterialien und Spezialgläser auf, verbessern die Eigenschaften keramischer Implantate in der Medizin und sie gelten als interessante Kandidaten für Anwendungen in Brennstoffzellen, in Solarzellen und in der Mikroelektronik sowie als neuartige Katalysatoren.

Sprecher des SFB „Molekulare Einblicke in Metalloxid/Wasser-Systeme: Strukturelle Evolution, Grenzflächen und Auflösung“  ist Prof. Dr. Christian Limberg, Humboldt-Universität zu Berlin; Weitere Partner sind:  Freie Universität Berlin, Technische Universität Berlin, Universität Potsdam, Bundesanstalt für Materialforschung und -prüfung Berlin, Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin. Gemeinsam wollen die beteiligten Forschungsteams elementare Prozesse rund um die Metalloxid-Wasser-Wechselwirkungen auf allen relevanten Längenskalen mit einer Kombination aus chemischer Synthese sowie hochmodernen experimentellen und theoretischen Methoden untersuchen. Die Deutsche Forschungsgemeinschaft hat Ende November 2013 neun neue Sonderforschungsbereiche (SFB) eingerichtet, die sie bis Mitte 2017 mit insgesamt 64,4 Millionen Euro fördert.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.