Pikosekunden schnelle Zeitlupe belegt: Oxid-Materialien schalten deutlich schneller als Halbleiter

Ein optischer Laserblitz (rot) zerstört die elektronische Ordnung (blau) in Magnetit und schaltet den Zustand des Material innerhalb eines Billionstels einer Sekunde von isolierend zu leitend um.

Ein optischer Laserblitz (rot) zerstört die elektronische Ordnung (blau) in Magnetit und schaltet den Zustand des Material innerhalb eines Billionstels einer Sekunde von isolierend zu leitend um. © Greg Stewart, SLAC National Accelerator Laboratory

Ein internationales Forscherteam unter maßgeblicher Beteiligung von Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) beobachtet den Schaltprozess zwischen nichtleitendem und leitendem Zustand in Eisenoxid (Magnetit) mit bislang unerreichter Präzision. In der aktuellen online-vorab-Ausgabe der Zeitschrift Nature Materials (DOI: 10.1038/NMAT3718) beschreiben sie, dass der Schaltprozess in einem Oxid in zwei Stufen abläuft und mehrere tausend Mal schneller ist als in heute üblichen Transistoren.

Materialien, die sich so verändern können, dass sie sowohl leitend als auch isolierend sein können, gelten als geeignet für elektronische Bauteile der Zukunft – zum Beispiel für Transistoren. Das Eisenoxid Magnetit ist der bekannteste Vertreter dieser Materialklasse. Bei tiefen Temperaturen hat es isolierende Eigenschaften. Bei höheren Temperaturen wird es leitend. Dieser Umschaltvorgang verläuft jedoch so schnell, dass man ihn auf atomarer Ebene bislang nicht verstehen konnte.

Ein internationales Forscherteam hat es nun mit einem Experiment an der amerikanischen Quelle für ultrakurze Röntgenblitze LCLS am Nationallabor SLAC geschafft, den Schaltvorgang in einer Art kürzest möglicher Zeitlupe einzufrieren. So konnten sie nachweisen, dass der Übergang in zwei Stufen verläuft. „In einem ersten Schritt entstehen in dem isolierenden Material leitende Inseln. Dann dauert es weniger als eine Pikosekunde (ein Billionstel einer Sekunde), bis die Atome sich umorganisieren und ein komplettes Metallgitter entsteht“, erläutert Christian Schüßler-Langeheine vom Helmholtz-Zentrum Berlin.

Am Elektronenspeicherring BESSY II, den das HZB betreibt, hat die Gruppe um Schüßler-Langeheine die für das Experiment bei SLAC erforderlichen Vorarbeiten durchgeführt. Mit den so gewonnenen Informationen konnte dann das Experiment bei SLAC konzipiert und erfolgreich durchgeführt werden.

In dem Experiment in Kalifornien wurde Magnetit auf minus 190 Grad gekühlt. Dann wurde es mit Infrarot-Laserlicht beschossen. Die Energiezufuhr löst den Schaltprozess aus. Kurze Zeit später folgt ein Röntgen-Laserpuls, mit dem die Forscher den Schaltprozess wie mit einer Stroboskoplampe beobachten. Solche zeitaufgelösten Messungen im Pikosekunden-Abstand sind nur an ganz wenigen Photonenquellen in der Welt möglich.

„Am HZB forschen wir an Materialien für eine schnellere und energieeffizientere Elektronik“, sagt Christian Schüßler-Langeheine. „In diesem Experiment haben wir gesehen, wie extrem schnell ein Schalter aus einem Oxid-Material wie Magnetit sein kann. Oxide sind somit eine spannende Alternative zu den heute gängigen Halbleitern. Insbesondere solche Materialien, die Metall-Isolator-Übergänge auch bei Raumtemperatur zeigen.“

An dem Forschungsprojekt waren Kollegen von SLAC und Stanford University, CFEL und Uni Hamburg, den Universitäten in Amsterdam, Köln, Potsdam, Regensburg, des MPI CPfS in Dresden, der Europäischen Quellen für Röntgenpulse ELETTRA in Trieste und XFEL in Hamburg, der Advanced Light Source in Berkely und dem Schweizer Paul Scherrer Institut beteiligt. Die Proben wurden an der Purdue Universität präpariert.

Link zur SLAC-Pressemitteilung

IH


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.