Humboldt-Stipendiat verstärkt Aziz-Team

Dr. Tristan Petit kommt als Postdoc ins Team von Prof. Dr. Emad Aziz. Foto:T.Petit

Dr. Tristan Petit kommt als Postdoc ins Team von Prof. Dr. Emad Aziz. Foto:T.Petit

Illustration eines Nanodiamanten.

Illustration eines Nanodiamanten. © T. Petit

Ab 1. Juni kommt Dr. Tristan Petit als Postdoktorand für zwei Jahre in das Team um Prof. Dr. Emad Flear Aziz. Mit einem Postdoktoranden-Stipendium der Alexander von Humboldt-Stiftung kann Petit seinen wissenschaftlichen Gastgeber in Deutschland selbst auswählen und hat sich für das Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq) entschieden, das Aziz aufgebaut hat: „Ich möchte im Team von Aziz mitarbeiten, weil sie sehr viel Erfahrung mit Spektroskopie in Wasser besitzen“, sagt Petit. 

Tristan Petit ist erst 26 Jahre alt und hat im März 2013 seine Promotion an der Ecole Normale Supérieure de Cachan, Frankreich, abgeschlossen. In seiner Doktorarbeit am Diamond Sensors Laboratory (CEA), Gif sur Yvette, untersuchte er Oberflächenmodifikationen von Nanodiamanten, um ihr Potenzial für neue biomedizinische Anwendungen auszuloten. Nanodiamanten könnten sich zum Beispiel als  „Wirkstofftaxis“ eignen, sie sind kaum toxisch und ihre Oberflächen lassen sich leicht für den Transport weiterer Moleküle funktionalisieren. Allerdings ist bislang die Wechselwirkung zwischen Wassermolekülen und Nanopartikeln nicht verstanden.

Diesen Wechselwirkungen will Petit nun auf den Grund gehen. Dafür wird er wasserbasierte Dispersionen von Nanodiamanten im Mikro-Strahl „in situ“ mit weicher Röntgenspektroskopie untersuchen. Dies könnte Aufschluss darüber geben, wie sich diese besonderen Nanopartikel unter physiologischen Bedingungen, also im Körper, verhalten.  „Mit dem einzigartigen Lixedrom-Versuchsaufbau können wir hier Experimente machen, die nirgendwo anders möglich wären. Das war eine starke Motivation, nach Berlin zu kommen“ sagt Petit.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.