Humboldt-Stipendiat verstärkt Aziz-Team

Dr. Tristan Petit kommt als Postdoc ins Team von Prof. Dr. Emad Aziz. Foto:T.Petit

Dr. Tristan Petit kommt als Postdoc ins Team von Prof. Dr. Emad Aziz. Foto:T.Petit

Illustration eines Nanodiamanten.

Illustration eines Nanodiamanten. © T. Petit

Ab 1. Juni kommt Dr. Tristan Petit als Postdoktorand für zwei Jahre in das Team um Prof. Dr. Emad Flear Aziz. Mit einem Postdoktoranden-Stipendium der Alexander von Humboldt-Stiftung kann Petit seinen wissenschaftlichen Gastgeber in Deutschland selbst auswählen und hat sich für das Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq) entschieden, das Aziz aufgebaut hat: „Ich möchte im Team von Aziz mitarbeiten, weil sie sehr viel Erfahrung mit Spektroskopie in Wasser besitzen“, sagt Petit. 

Tristan Petit ist erst 26 Jahre alt und hat im März 2013 seine Promotion an der Ecole Normale Supérieure de Cachan, Frankreich, abgeschlossen. In seiner Doktorarbeit am Diamond Sensors Laboratory (CEA), Gif sur Yvette, untersuchte er Oberflächenmodifikationen von Nanodiamanten, um ihr Potenzial für neue biomedizinische Anwendungen auszuloten. Nanodiamanten könnten sich zum Beispiel als  „Wirkstofftaxis“ eignen, sie sind kaum toxisch und ihre Oberflächen lassen sich leicht für den Transport weiterer Moleküle funktionalisieren. Allerdings ist bislang die Wechselwirkung zwischen Wassermolekülen und Nanopartikeln nicht verstanden.

Diesen Wechselwirkungen will Petit nun auf den Grund gehen. Dafür wird er wasserbasierte Dispersionen von Nanodiamanten im Mikro-Strahl „in situ“ mit weicher Röntgenspektroskopie untersuchen. Dies könnte Aufschluss darüber geben, wie sich diese besonderen Nanopartikel unter physiologischen Bedingungen, also im Körper, verhalten.  „Mit dem einzigartigen Lixedrom-Versuchsaufbau können wir hier Experimente machen, die nirgendwo anders möglich wären. Das war eine starke Motivation, nach Berlin zu kommen“ sagt Petit.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.