Posterpreis auf Internationaler Teilchenbeschleunigerkonferenz an Julia Vogt

Julia Vogt aus der Gruppe SRF Wissenschaft (G-ISRF) erhielt für ihr Poster über die systematische Verdrängung von magnetischen Flusslinien aus supraleitendem Niob auf der 4. IPAC den Posterpreis. Ebenfalls ausgezeichnet wurde Yichao Mo (UMD, College Park, Maryland). Die beiden hatten sich unter mehr als 110 Bewerberinnen und Bewerbern durchgesetzt. Foto: IPAC

Julia Vogt aus der Gruppe SRF Wissenschaft (G-ISRF) erhielt für ihr Poster über die systematische Verdrängung von magnetischen Flusslinien aus supraleitendem Niob auf der 4. IPAC den Posterpreis. Ebenfalls ausgezeichnet wurde Yichao Mo (UMD, College Park, Maryland). Die beiden hatten sich unter mehr als 110 Bewerberinnen und Bewerbern durchgesetzt. Foto: IPAC

Vom 12. bis 17. Mai tagte in Shanghai, China, die 4. Internationale Konferenz für Teilchenbeschleuniger (International Particle Accelerator Conference, IPAC13). Rund 1.200 Teilnehmerinnen und Teilnehmern aus aller Welt hatten sich versammelt, um sich über Fortschritte bei Lichtquellen und Teilchenbeschleunigern auszutauschen. Besonderes Gewicht legten die Organisatoren auf die Postersession, auf der Nachwuchswissenschaftler ihre Arbeiten vorstellen konnten. Dabei erhielt die HZB-Doktorandin Julia Vogt aus dem Institut SRF Wissenschaft und Technologie (G-ISRF) einen Preis für das beste Poster. Insgesamt hatte die Jury über 110 eingereichte Poster begutachtet und zwei davon ausgezeichnet.

HZB-Experten waren auch im Vortragsprogramm sehr gut vertreten.  „Unsere Kollegen halten auf der IPAC13 drei Vorträge“, sagt Prof. Dr. Andreas Jankowiak, der das Institut Beschleunigerphysik des HZB leitet. Dr. Peter Kuske berichtet über seine theoretischen Arbeiten und Messungen zu Instabilitäten, die durch kohärente Synchrotronstrahlung getrieben werden, und die auch beim Zukunftsprojekt BESSYVSR sehr wichtig werden. Jankowiaks Doktorand Martin Ruprecht spricht über „Single Particle Tracking“ für BESSYVSR und Dr. Oliver Kugeler (aus G-ISRF) trägt neue Erkenntnisse zu Erhöhungen der Güte von supraleitenden Kavitäten durch kontrollierte Abkühlprozesse vor. „Damit sind wir das deutsche Labor mit den meisten Vorträgen. Und aus Europa ist nur das CERN stärker vertreten als wir.  Wir liegen gleichauf mit den anderen großen internationalen Laboren“, sagt Jankowiak.

Zum Vortragsprogramm und zur Broschüre über die Postersession: http://www.ipac13.org/sci_pro.html

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.