Nanoreaktor mit Titandioxid

Aus der Lösung bilden sich im Polymer-Netz um den Polystyrol-Kern (PS) auch bei Raumtemperatur kristalline Nanopartikel aus Titandioxid mit Durchmessern von ca 6 Nanometern.

Aus der Lösung bilden sich im Polymer-Netz um den Polystyrol-Kern (PS) auch bei Raumtemperatur kristalline Nanopartikel aus Titandioxid mit Durchmessern von ca 6 Nanometern.

Kleine Partikel aus Titandioxid werden in alltäglichen Produkten wie Wandfarbe, Zahnpasta oder Sonnencreme genutzt, sie reflektieren das Licht oder wirken als Scheuermittel. Doch mit abnehmender Partikelgröße verändern sich ihre Eigenschaften, so dass kristalline Titandioxid-Nanopartikel auch als  Katalysatoren wirken: Angeregt durch den UV-Anteil im Sonnenlicht zersetzen sie Schadstoffe oder ermöglichen andere gewünschte Reaktionen. 

Chemiker um Dr. Katja Henzler vom Helmholtz-Zentrum Berlin haben nun einen Syntheseweg entwickelt, um solche Nanopartikel bei Raumtemperatur in einem Netz aus Polymeren zu erzeugen. Mit Untersuchungen an der Berliner Synchrotronstrahlenquelle BESSY II haben sie nachgewiesen, dass die Nanoteilchen dabei kristallin sind. Damit haben sie einen wesentlichen Fortschritt bei der Synthese von so genannten „Polymeren Nanoreaktoren“ erreicht, denn bislang mussten die Nanopartikel hoch erhitzt werden, um sie zum Auskristallisieren zu bringen.

Die „Polymeren-Nanoreaktoren“ aus dem Team um Katja Henzler bestehen aus einem Polystyrol-Kern, der von einem Netz aus PNIPAM-Ketten umhüllt wird. Die Chemiker gaben diese Polymer-Strukturen in eine Lösung auf Ethanolbasis. Durch Zugabe einer Titanverbindung bildeten sich winzige Titandioxid-Partikel. Diese lagerten sich in das PNIPAM-Netzwerk ein, das sie auf Abstand hielt und damit verhindert, dass die Nanopartikel zu größeren Teilchen versintern. Die Chemiker konnten die Geschwindigkeit dieses Prozesses steuern und – wie sich in den Untersuchungen an BESSY II zeigte  -  damit auch die Qualität der gebildeten Nanokristalle beeinflussen.

Mit der neuartigen Kombination aus Röntgenmikroskopie und Spektroskopie (NEXAFS-TXM, U41-SGM) am BESSY II konnten Henzler und ihre Kollegen des Mikroskopie-Teams nachweisen, dass die eingelagerten Nanopartikel sehr gleichmäßig über die Polymeren Nanoreaktoren verteilt sind. Dabei untersuchten sie ihre Proben in wässriger Umgebung, konnten also die sonst übliche Trocknung, die zu Artefakten führen kann, umgehen.  Ihre Ergebnisse zeigen, dass die Nanopartikel kristallin sind, die TiO2-Moleküle also wie in größeren Partikeln auch, geometrisch angeordnet auf Gitterplätzen sitzen. „Die Nanokristalle besitzen eine tetragonale Anatase-Struktur und diese kristalline Struktur ist wichtig, damit sie ihre katalytische Aktivität entfalten können. Unsere neue Methode erlaubt es auch, die Qualität der  synthetisierten Partikel zu kontrollieren, so dass wir die Partikel für entsprechende Anwendungen optimieren können“, sagt Katja Henzler.

Nano Letters, 2013, 13 (2), pp 824–828;

DOI: 10.1021/nl3046798

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.