Neue Lösungen für transparente Kontaktelektroden

Rasterelektronenmikroskopische Aufnahme von Nanodrähten  aus Silber mit Durchmessern von 0,1 Mikrometern und Längen  zwischen 5  und 10 Mikrometern.

Rasterelektronenmikroskopische Aufnahme von Nanodrähten aus Silber mit Durchmessern von 0,1 Mikrometern und Längen zwischen 5 und 10 Mikrometern. © ACS Nano 3: 1767-1774

Transparente Kontaktelektroden werden heute überall eingesetzt, in Flachbildschirmen, Solar-Modulen oder in den neuen organischen Leuchtdioden-Anzeigen. In der Regel bestehen sie aus Metalloxiden wie In2O3, SnO2, ZnO and TiO2.

Doch da Rohstoffe wie Indium immer teurer werden, suchen Forscher nach alternativen Lösungen. Dr. Klaus Ellmer, Wissenschaftler am HZB, hat in einem Übersichtsartikel im renommierten Wissenschaftsjournal Nature Photonics Vor- und Nachteile von etablierten und neuen Materialien für solche Kontaktelektroden ausgeleuchtet.


Dabei haben Nanostrukturen aus Metallen (Ag oder Cu) oder Kohlenstoff interessante Eigenschaften, die durch weitere Forschung nutzbar gemacht werden könnten. Auch die Kohlenstoff-Modifikation Graphen könnte sich als transparente Kontaktelektrode eignen, weil Graphen nicht nur durchsichtig, sondern auch extrem leitfähig ist. Diese Eigenschaften hängen ebenfalls mit dem Aufbau des Materials zusammen: Graphen besteht aus nur einer Lage von Kohlenstoff-Atomen, die sich zu einem sechseckigen „Bienenwaben“-Gitter anordnen; in den zwei Dimensionen dieser Ebene können sich die Elektronen fast frei bewegen.
„Solche neuen Materialien können mit konventionellen Lösungen kombiniert werden oder auch ganz neue Einsatzgebiete erobern“, meint Ellmer. Dazu müssen Forschungsteams jedoch noch Lösungen für bekannte Probleme, zum Beispiel Kurzschlüsse, bei Nanostrukturen finden und die Transportmechanismen weiter aufklären. Interessant wäre auch, ob sich solche zweidimensionalen „Elektronengase“ noch in anderen Materialien als dem bekannten Graphen bilden. Über den Erfolg wird am Ende entscheiden, ob die neuen Materialien auch im praktischen Einsatz dauerhaft stabil funktionieren und wie günstig sie sich herstellen lassen.

Der Beitrag von Klaus Ellmer ist am 30. November online in Nature photonics erschienen, doi:10.1038/nphoton.2012.282

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.
  • Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Nachricht
    22.10.2024
    Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Zehn Teams am Helmholtz-Zentrum Berlin bauen eine langfristige internationale Allianz auf, um gemeinsam Verfahren zu entwickeln, die die Reproduzierbarkeit von Perowskit-Materialien sicherstellen. Das Projekt TEAM PV wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.