Schnelle Entmagnetisierung durch Spintransport

Dass ein ultrakurzer Laserpuls eine ferromagnetische Schicht im Nu entmagnetisieren kann, ist seit etwa 1996 bekannt. Doch wie diese Entmagnetisierung funktioniert, ist noch nicht verstanden. Nun haben die Physikerin Dr. Andrea Eschenlohr und ihre Kollegen vom Helmholtz-Zentrum Berlin und der Universität Uppsala in Schweden gezeigt, dass es offenbar nicht der Lichtpuls selbst ist, der die Entmagnetisierung bewirkt.

Sie bestrahlten dafür zwei unterschiedliche Schichtsysteme mit extrem kurzen Laserpulsen von nur hundert Femtosekunden (10–15 s). Während eine Probe im Wesentlichen aus einer dünnen ferromagnetischen Nickelschicht bestand, war in der anderen Probe diese Nickelschicht von einer unmagnetischen Goldschicht bedeckt. Obwohl sie nur 30 Nanometer (10-9m) dick war, schluckte die Goldschicht den Großteil des Laserlichts, in der Nickelschicht kam kaum noch Licht an. Dennoch nahm die Magnetisierung der Nickelschicht kurz nach dem Eintreffen des Laserpulses in beiden Proben rasch ab, bei der goldbeschichteten Probe allerdings um Sekundenbruchteile später. Dies konnten die Forscher durch Messungen mit zirkular polarisierten Femtosekunden-Röntgenpulsen beobachten, die sie am Femtoslicing-Strahlrohr am Berliner Elektronenspeicherring BESSY II durchführten, den das HZB betreibt.

„Wir konnten damit experimentell zeigen, dass dabei die ultraschnelle Entmagnetisierung nicht durch das Licht selbst bewirkt wird, sondern durch heiße Elektronen, die der Laserpuls erzeugt“, erklärt Andrea Eschenlohr. Die so angeregten Elektronen können sich über kurze Distanzen, also durch die hauchdünne Goldschicht, extrem rasch bewegen. Sie transportieren damit ihr magnetisches Moment (den „Spin“) auch in die ferromagnetische Nickelschicht, so dass dort die vorherrschende magnetische Ordnung zusammenbricht. „Eigentlich wollten wir sehen, wie wir die Spins mit dem Laserpuls beeinflussen können“, erklärt der Leiter des Experiments Dr. Christian Stamm. „Dass wir aber direkt beobachten konnten, wie diese Spins wandern, war eine Überraschung.“

Laserpulse sind damit eine Möglichkeit, gezielt „Spinströme“ zu erzeugen, bei denen Spin an Stelle von elektrischer Ladung übertragen wird. Diese Beobachtung ist für das Forschungsgebiet der Spintronik interessant. Dabei entwerfen Forscher neue Bauelemente aus magnetischen Schichtsystemen, die mit Spins anstatt mit Elektronen „rechnen“ und dadurch Informationen extrem schnell und energiesparend verarbeiten und speichern können.

Dr. Andrea Eschenlohr war bis Ende 2012 am HZB beschäftigt, wo sie die hier vorgestellten Ergebnisse im Rahmen ihrer Doktorarbeit erzielte. Sie ist seit Januar als wissenschaftliche Mitarbeiterin an der Universität Duisburg-Essen tätig.

Die Arbeit “Ultrafast spin transport as key to femtosecond demagnetization” wurde am 27.1.2012 in Nature Materials veröffentlicht.
http://dx.doi.org/10.1038/NMAT3546

Dr. Andrea Eschenlohr
Universität Duisburg-Essen
Tel.: +49 (0)203 379-4531
andrea.eschenlohr@uni-due.de

Die Dissertation von Andrea Eschenlohr ist nun online im Open Access abrufbar.

((doi: http://dx.doi.org/10.5442/d0033))

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.