Forscher zeigen mit Berechnungen, dass kompakte Laser-Plasma-Beschleuniger möglich sind

Ultrakurze Pulse aus kohärentem Röntgenlicht sind ein fantastisches Mittel, um Einsichten in atomare oder molekulare Reaktionen zu gewinnen. In Freien-Elektronen-Lasern können solche Pulse im Femtosekundenbereich (10 -15 sek) erzeugt werden. Doch bislang sind dafür enorme Beschleuniger nötig, die nur an wenigen Großforschungseinrichtungen der Welt zur Verfügung stehen.  An einer kompakteren Alternative arbeitet Dr. Atoosa Meseck vom HZB-Institut für Beschleunigerphysik mit Kollegen aus dem HZB und anderen Forschungseinrichtungen. Nun haben sie einen Bauplan für eine kompakte Quelle für kohärente kurzwellige Strahlung entworfen und berechnet. Dieses Ergebnis veröffentlichten sie in der Fachzeitschrift "Physical Review".

Das Prinzip klingt ganz einfach: In einem heißen Plasma  erzeugt ein Laserstrahl „Wellen“, die die Elektronen bis auf nahezu Lichtgeschwindigkeit beschleunigen. Allerdings erhalten die so beschleunigten Elektronen damit unterschiedlich viel Energie, so dass dieRöntgenpulse, die sie abgeben, nicht kohärent sind.

Andreas Maier vom CFEL bei DESY hat nun mit Meseck und weiteren Kollegen berechnet, wie dieses Problem gelöst werden könnte: Der Schlüssel steckt in der Anordnung der so genannten Undulatoren. Diese Undulatoren bestehen aus einer Reihe von Dipolmagneten, die die Elektronen auf eine Art Slalombahn zwingen. Durch die geschickte Wahl der Abstände und Feldstärken dieser Geräte sowie durch ein geeignetes Elektronenstrahlführungssystem lässt sich  die lokale Energiebandbreite deutlich verringern, so dass die Elektronen nahezu gleiche Energie besitzen und kohärente Röntgenpulse abgeben. Damit haben die Beschleunigerexperten einen Weg zu einem kompakten „Freie-Elektronen-Laser“ aufgezeigt.

„Wir verfolgen die Idee eines Laser-getriebenen Plasma-Beschleunigers schon seit einigen Jahren, zuerst sind wir dafür fast ausgelacht worden. Daher bin ich ganz stolz, dass nun auch andere Experten erkennen, dass dies eine durchaus interessante Idee und wie ich glaube, auch eine machbare Idee ist“, sagt Atoosa Meseck. Auf die Ergebnisse einer experimentellen Arbeitsgruppe, die diese Idee nun überprüfen wird, sind alle Beteiligten sehr gespannt.

Mehr Informationen:

http://prx.aps.org/abstract/PRX/v2/i3/e031019

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.