Europäische Union fördert Dünnschicht-Solarzellen-Projekt mit mehr als zehn Millionen Euro

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle<br />als Antireflexionsschicht abgeschieden<br />©HZB

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle
als Antireflexionsschicht abgeschieden
©HZB

Am europäischen Konsortium sind das Helmholtz-Zentrum Berlin und die Freie Universität Berlin als Partner beteiligt

Die Europäische Union hat bis 2015 innerhalb des 7. Forschungsrahmenprogramms Mittel in Höhe von mehr als zehn Millionen Euro für das Dünnschicht-Solarzellen-Projekt „Scalenano“ bewilligt. 13 europäische Forschungsgruppen werden an der Weiterentwicklung der Chalkogenid-Solarzellentechnologie arbeiten. In Deutschland sind das Helmholtz-Zentrum Berlin (HZB) und die Freie Universität Berlin an dem europäischen Konsortium beteiligt. Das Ziel ist, die Produktionskosten deutlich zu senken und mit nanostrukturierten Materialien zugleich den Wirkungsgrad der Dünnschicht-Module zu erhöhen.

Unter den Chalkogeniden ist Kupfer-Indium-Gallium-Diselenid (CIGSe) das Material, welches den gegenwärtig höchsten Wirkungsgrad liefert. Bisher wird die Verbindung überwiegend mit einer vakuumbasierten Beschichtungstechnik in mikrometerdünnen Schichten auf Glas oder Folie aufgebracht. Ein Ziel der europäischen Zusammenarbeit ist es, neue umweltfreundliche Produktionstechniken zu entwickeln, die ohne Vakuum auskommen. Eine erhebliche Kostensenkung soll damit erreicht werden.

Mit neuen Material- und Bauelementkonzepten will man zugleich den Durchbruch hinsichtlich höherer Wirkungsgrade schaffen. Dafür kommen nanostrukturierte Materialien zum Einsatz. Mit der elektrochemischen Synthese von nanokristallinen Vorstufen, sogenannten Precursoren, und neuen Techniken, bei denen Nanopartikel ähnlich wie Tinte gedruckt werden, wollen die Forscher völlig neue Produktionswege erschließen. Damit dies nicht nur im Labormaßstab an einzelnen Solarzellen gelingt, sollen die Herstellungskonzepte zugleich für eine mögliche Hochskalierung auf größere Maßstäbe geprüft werden.

Die Projektpartner am Helmholtz-Zentrum Berlin werden vor allem an der Qualitätskontrolle und Prozessüberwachung arbeiten. Das HZB-Team um Dr. Thomas Unold entwickelt hierfür neuartige analytische Methoden zur Charakterisierung der Solarzellen während des Herstellungsprozesses. Damit wollen die Wissenschaftler die Qualität des Chalkogenid-Absorbermaterials verbessern. Mit den neuen Methoden soll auch eine hohe Ausbeute und ein großer Durchsatz bei der Hochskalierung gewährleistet werden.

In der neuen Forschungsstrategie sollen auch Dünnschicht-Absorbermaterialien mit nanostrukturierten sogenannten transparenten leitfähigen Oxiden (TCO) kombiniert werden. Zu diesem Schwerpunkt arbeitet das Team von Professorin Martha Lux-Steiner und Dr. Sophie Gledhill von der Freien Universität Berlin und dem Helmholtz-Zentrum Berlin an der Anpassung, Optimierung und optischen Modellierung von Chalkogenid-Solarzellen, die zusätzlich Zinkoxid-Nano-Arrays enthalten.

Die Berliner Forscher arbeiten außerdem an der nächsten Generation der Chalkogenid-Dünnschicht-Materialien, den sogenannten Kesteriten. Diese besitzen ähnliche Eigenschaften wie Kupfer-Indium-Gallium-Diselenid-Materalien, kommen jedoch ohne Indium aus, das relativ selten in der Erdkruste vorkommt.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.