Energie-Allianz Berlin-Potsdam-Jülich: Forschung verspricht völlig neue Materialien für die Photovoltaik

Das Helmholtz-Zentrum Berlin und das Forschungszentrum Jülich bilden zusammen mit der Humboldt-Universität zu Berlin, der Universität Potsdam und der Freien Universität Berlin eine der drei neuen Energie-Allianzen, die von der Helmholtz-Gemeinschaft ins Leben gerufen wurden. Ziel dieser Energie-Allianz mit dem Namen „Anorganisch/organische Hybrid-Solarzellen und -Techniken für die Photovoltaik“ ist es, den drängenden Forschungsbedarf zum raschen Umbau der Energieversorgung gezielt zu decken. Die Vorhaben werden durch den Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft für drei Jahre gefördert, wobei die universitären Partner zusätzlich eigene Mittel einbringen. Eine Fortsetzung der Forschung auch über die drei Jahre hinaus ist geplant.

Silizium ist bislang immer noch das meist verwendete Material in Solarzellen. Darüber hinaus gibt es Anstrengungen, andere anorganische Halbleiter wie Kupfer-Indium-Sulfid/Selenid oder auch Gallium-Arsenid-Verbindungen einzusetzen. Sogar organische Materialien können verwendet werden, um das Sonnenlicht in elektrische Energie umzuwandeln.

Jede einzelne Materialklasse hat jedoch auch Nachteile. Beispielsweise sind die Herstellungskosten bei anorganischen Halbleitern relativ hoch, organische Solarzellen aus kleinen Molekülen oder Polymeren wiederum haben relativ niedrige Wirkungsgrade. Eine ganz neue Möglichkeit besteht nun darin, anorganische und organische Materialien zu kombinieren, um die jeweiligen Vorteile ausnutzen und Nachteile soweit wie möglich kompensieren zu können.

Von solchen sogenannten Hybrid-Solarzellen versprechen sich Experten sowohl eine Steigerung der Effizienz als auch eine Reduktion der Herstellungskosten. Diesem neuen Forschungsansatz widmet sich die Helmholtz-Energie-Allianz der Berliner, Potsdamer und Jülicher Partner. Sie bündelt die Expertise, die zu diesen zwei ganz unterschiedlichen Materialklassen in den beteiligten Forschungszentren und Universitäten vorhanden ist. Die Helmholtz-Energie-Allianz „Anorganisch/organische Hybrid-Solarzellen und -Techniken für die Photovoltaik“ will damit das hochaktuelle Forschungsfeld entscheidend vorantreiben.

Im Mittelpunkt der Forschung stehen Prozesse, die an den Grenzflächen zwischen anorganischen Halbleitern und organischen Materialien bislang noch die effektive Stromerzeugung in der Solarzelle begrenzen. Um die Effektivität solcher Solarzell-Anordnungen zu verbessern, setzen die Forscher unter anderem auf Nanostrukturen. So sollen anorganische Nanopartikel und Nanodrähte in organische Materialien eingebracht werden, wobei zugleich auf eine kostengünstige Fertigung solcher Syntheseverfahren geachtet wird. Vielversprechend ist außerdem die Einbettung organischer Halbleiter zwischen anorganische Nanosäulen.

„Aufgrund der Komplexität der angestrebten Systeme wird die Forschung und Entwicklung von Hybrid-Konzepten für die Photovoltaik nicht nach den drei Jahren der Förderperiode abgeschlossen sein können. Die vom Helmholtz-Präsidenten initiierte und geförderte Energieallianz ermöglicht es uns aber, die Arbeiten mit einer langfristigen Perspektive im Raum Berlin-Potsdam mit den Kollegen aus Jülich fortzuführen", so der Sprecher der Energie-Allianz, Prof. Norbert Koch vom Helmholtz-Zentrum Berlin und der Humboldt Universität Berlin.

Durch die Helmholtz-Energie-Allianz werden laufende Aktivitäten gestärkt, sodass ein international sichtbares Zentrum für Forschung und Entwicklung innovativer Hybrid-Photovoltaik entsteht: das gemeinschaftlich vom Helmholtz-Zentrum Berlin (HZB), dem Forschungszentrum Jülich, der Humboldt-Universität zu Berlin (HU), der Freien Universität Berlin, der Technischen Universität Berlin und der Universität Potsdam betriebene "Zentrum für Hybrid-Photovoltaik" im Integrative Research Institute for the SciencesIRIS Adlershof der HU und am Wilhelm-Conrad-Röntgen Campus des HZB.

Dieses Zentrum verknüpft einerseits virtuell die Aktivitäten der Partner und bekommt andererseits auch eine reale räumliche Heimat am Wissenschafts- und Technologiepark Berlin-Adlershof. Als weiterer Partner assoziiert ist das Berliner Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik, PVcomB.

IH


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.